固体氧化物燃料电池用la0.6 pr0.4 co0.8 ni0.3 2o3 -δ纳米纤维状钙钛矿阴极

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiushi Lan, Aihemaiti Tuniyazi, Yinzhuo Jia, Zhe Zhang, Hui Fan
{"title":"固体氧化物燃料电池用la0.6 pr0.4 co0.8 ni0.3 2o3 -δ纳米纤维状钙钛矿阴极","authors":"Xiushi Lan,&nbsp;Aihemaiti Tuniyazi,&nbsp;Yinzhuo Jia,&nbsp;Zhe Zhang,&nbsp;Hui Fan","doi":"10.1016/j.mseb.2025.118577","DOIUrl":null,"url":null,"abstract":"<div><div>Perovskite-type nanofibrous La<sub>0.6</sub>Pr<sub>0.4</sub>Co<sub>0.8</sub>Ni<sub>0.2</sub>O<sub>3-δ</sub> (LPCN-fiber) and powdered La<sub>0.6</sub>Pr<sub>0.4</sub>Co<sub>0.8</sub>Ni<sub>0.2</sub>O<sub>3-δ</sub> (LPCN-powder) were prepared by electrospinning and citric acid combustion methods, respectively. The Brunner-Emmet-Teller (BET) analysis demonstrated that LPCN-fiber possessed a higher specific surface area (6.39 m<sup>2</sup>/g), which endowed it with a greater number of active sites and improved ion transport pathways. In addition, both the X-ray photoelectron spectroscopy (XPS) and distribution of relaxation time (DRT) proved the enhanced oxygen reduction reaction (ORR) activity of LPCN-fiber than that of LPCN-powder. The electrochemical performance measurements revealed that the single cell equipped with LPCN-fiber cathode exhibited a lower polarization resistance (0.15 Ω cm<sup>2</sup>) and a higher maximum power density (1.16 W cm<sup>−2</sup>) at 800 °C compared to LPCN-powder based cell. Furthermore, the cell with LPCN-fiber cathode showed high long-term stability. These results indicate that morphological regulation is an effective strategy to develop SOFCs featuring excellent oxygen transport properties.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"322 ","pages":"Article 118577"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"La0.6Pr0.4Co0.8Ni0.2O3-δ nano-fibrous perovskite cathodes for solid oxide fuel cells\",\"authors\":\"Xiushi Lan,&nbsp;Aihemaiti Tuniyazi,&nbsp;Yinzhuo Jia,&nbsp;Zhe Zhang,&nbsp;Hui Fan\",\"doi\":\"10.1016/j.mseb.2025.118577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Perovskite-type nanofibrous La<sub>0.6</sub>Pr<sub>0.4</sub>Co<sub>0.8</sub>Ni<sub>0.2</sub>O<sub>3-δ</sub> (LPCN-fiber) and powdered La<sub>0.6</sub>Pr<sub>0.4</sub>Co<sub>0.8</sub>Ni<sub>0.2</sub>O<sub>3-δ</sub> (LPCN-powder) were prepared by electrospinning and citric acid combustion methods, respectively. The Brunner-Emmet-Teller (BET) analysis demonstrated that LPCN-fiber possessed a higher specific surface area (6.39 m<sup>2</sup>/g), which endowed it with a greater number of active sites and improved ion transport pathways. In addition, both the X-ray photoelectron spectroscopy (XPS) and distribution of relaxation time (DRT) proved the enhanced oxygen reduction reaction (ORR) activity of LPCN-fiber than that of LPCN-powder. The electrochemical performance measurements revealed that the single cell equipped with LPCN-fiber cathode exhibited a lower polarization resistance (0.15 Ω cm<sup>2</sup>) and a higher maximum power density (1.16 W cm<sup>−2</sup>) at 800 °C compared to LPCN-powder based cell. Furthermore, the cell with LPCN-fiber cathode showed high long-term stability. These results indicate that morphological regulation is an effective strategy to develop SOFCs featuring excellent oxygen transport properties.</div></div>\",\"PeriodicalId\":18233,\"journal\":{\"name\":\"Materials Science and Engineering: B\",\"volume\":\"322 \",\"pages\":\"Article 118577\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: B\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921510725006014\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725006014","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用静电纺丝法和柠檬酸燃烧法分别制备了钙钛矿型纳米纤维La0.6Pr0.4Co0.8Ni0.2O3-δ (lpcn -纤维)和粉末La0.6Pr0.4Co0.8Ni0.2O3-δ (lpcn -粉末)。Brunner-Emmet-Teller (BET)分析表明,lpcn -光纤具有更高的比表面积(6.39 m2/g),这使其具有更多的活性位点,并改善了离子传输途径。此外,x射线光电子能谱(XPS)和弛豫时间(DRT)分布均证明lpcn -纤维的氧还原反应(ORR)活性比lpcn -粉末强。电化学性能测试表明,与lpcn -粉末电池相比,lpcn -纤维阴极电池在800°C时具有更低的极化电阻(0.15 Ω cm2)和更高的最大功率密度(1.16 W cm−2)。此外,lpcn -光纤阴极电池表现出较高的长期稳定性。这些结果表明,形态调控是开发具有优异氧转运性能的sofc的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
La0.6Pr0.4Co0.8Ni0.2O3-δ nano-fibrous perovskite cathodes for solid oxide fuel cells
Perovskite-type nanofibrous La0.6Pr0.4Co0.8Ni0.2O3-δ (LPCN-fiber) and powdered La0.6Pr0.4Co0.8Ni0.2O3-δ (LPCN-powder) were prepared by electrospinning and citric acid combustion methods, respectively. The Brunner-Emmet-Teller (BET) analysis demonstrated that LPCN-fiber possessed a higher specific surface area (6.39 m2/g), which endowed it with a greater number of active sites and improved ion transport pathways. In addition, both the X-ray photoelectron spectroscopy (XPS) and distribution of relaxation time (DRT) proved the enhanced oxygen reduction reaction (ORR) activity of LPCN-fiber than that of LPCN-powder. The electrochemical performance measurements revealed that the single cell equipped with LPCN-fiber cathode exhibited a lower polarization resistance (0.15 Ω cm2) and a higher maximum power density (1.16 W cm−2) at 800 °C compared to LPCN-powder based cell. Furthermore, the cell with LPCN-fiber cathode showed high long-term stability. These results indicate that morphological regulation is an effective strategy to develop SOFCs featuring excellent oxygen transport properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信