{"title":"GTMALoc:基于图转换器和多头注意机制的miRNA亚细胞定位预测。","authors":"Xindi Huang, Jipu Jiang, Lifen Shi, Cheng Yan","doi":"10.3389/fgene.2025.1623008","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) play a crucial role in regulating gene expression, and their subcellular localization is essential for understanding their biological functions. However, accurately predicting miRNA subcellular localization remains a challenging task due to their short sequences, complex structures, and diverse functions. To improve prediction accuracy, this study proposes a novel model based on a graph transformer and a multi-head attention mechanism. The model integrates multi-source features which include the miRNA sequence similarity network, miRNA functional similarity network, miRNA-mRNA association network, miRNA-drug association network, and miRNA-disease association network. Specifically, we first apply the node2vec algorithm to extract features from these biological networks. Then, we use a graph transformer to capture relationships between nodes within the networks, enabling a better understanding of miRNA functions across different biological contexts. Next, a multi-head attention mechanism is implemented to combine miRNA features from multiple networks, allowing the model to capture deeper feature relationships and enhance prediction performance. Performance evaluation shows that the proposed method achieves significant improvements over current approaches on open-access datasets, achieving high performance with an AUC (area of receiver operating characteristic curve) of 0.9108 and AUPR(area of precision-recall curve) of 0.8102. It not only significantly improves prediction accuracy but also exhibits strong generalization and stability.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":"16 ","pages":"1623008"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222170/pdf/","citationCount":"0","resultStr":"{\"title\":\"GTMALoc: prediction of miRNA subcellular localization based on graph transformer and multi-head attention mechanism.\",\"authors\":\"Xindi Huang, Jipu Jiang, Lifen Shi, Cheng Yan\",\"doi\":\"10.3389/fgene.2025.1623008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MicroRNAs (miRNAs) play a crucial role in regulating gene expression, and their subcellular localization is essential for understanding their biological functions. However, accurately predicting miRNA subcellular localization remains a challenging task due to their short sequences, complex structures, and diverse functions. To improve prediction accuracy, this study proposes a novel model based on a graph transformer and a multi-head attention mechanism. The model integrates multi-source features which include the miRNA sequence similarity network, miRNA functional similarity network, miRNA-mRNA association network, miRNA-drug association network, and miRNA-disease association network. Specifically, we first apply the node2vec algorithm to extract features from these biological networks. Then, we use a graph transformer to capture relationships between nodes within the networks, enabling a better understanding of miRNA functions across different biological contexts. Next, a multi-head attention mechanism is implemented to combine miRNA features from multiple networks, allowing the model to capture deeper feature relationships and enhance prediction performance. Performance evaluation shows that the proposed method achieves significant improvements over current approaches on open-access datasets, achieving high performance with an AUC (area of receiver operating characteristic curve) of 0.9108 and AUPR(area of precision-recall curve) of 0.8102. It not only significantly improves prediction accuracy but also exhibits strong generalization and stability.</p>\",\"PeriodicalId\":12750,\"journal\":{\"name\":\"Frontiers in Genetics\",\"volume\":\"16 \",\"pages\":\"1623008\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222170/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fgene.2025.1623008\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2025.1623008","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
GTMALoc: prediction of miRNA subcellular localization based on graph transformer and multi-head attention mechanism.
MicroRNAs (miRNAs) play a crucial role in regulating gene expression, and their subcellular localization is essential for understanding their biological functions. However, accurately predicting miRNA subcellular localization remains a challenging task due to their short sequences, complex structures, and diverse functions. To improve prediction accuracy, this study proposes a novel model based on a graph transformer and a multi-head attention mechanism. The model integrates multi-source features which include the miRNA sequence similarity network, miRNA functional similarity network, miRNA-mRNA association network, miRNA-drug association network, and miRNA-disease association network. Specifically, we first apply the node2vec algorithm to extract features from these biological networks. Then, we use a graph transformer to capture relationships between nodes within the networks, enabling a better understanding of miRNA functions across different biological contexts. Next, a multi-head attention mechanism is implemented to combine miRNA features from multiple networks, allowing the model to capture deeper feature relationships and enhance prediction performance. Performance evaluation shows that the proposed method achieves significant improvements over current approaches on open-access datasets, achieving high performance with an AUC (area of receiver operating characteristic curve) of 0.9108 and AUPR(area of precision-recall curve) of 0.8102. It not only significantly improves prediction accuracy but also exhibits strong generalization and stability.
Frontiers in GeneticsBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍:
Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public.
The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.