升高的温度和压力驱动安培级二氧化碳电还原到CO在膜电极组装电解槽†

EES catalysis Pub Date : 2025-04-22 DOI:10.1039/D5EY00034C
Yang Li, Huiyue Liu, Jithu Raj, Mohammad Pishnamazi and Jingjie Wu
{"title":"升高的温度和压力驱动安培级二氧化碳电还原到CO在膜电极组装电解槽†","authors":"Yang Li, Huiyue Liu, Jithu Raj, Mohammad Pishnamazi and Jingjie Wu","doi":"10.1039/D5EY00034C","DOIUrl":null,"url":null,"abstract":"<p >Achieving high selectivity for carbon monoxide (CO) in the electrochemical reduction of carbon dioxide (CO<small><sub>2</sub></small>) at industrially relevant current densities, particularly using dilute CO<small><sub>2</sub></small> feedstocks, remains a significant challenge. Herein, we demonstrate that combining elevated temperature and CO<small><sub>2</sub></small> pressure substantially enhances CO production in a membrane electrode assembly (MEA) electrolyzer using commercially available silver nanoparticles. Elevated CO<small><sub>2</sub></small> pressures increase CO<small><sub>2</sub></small> concentration and reduce the diffusion layer, counteracting the reduced CO<small><sub>2</sub></small> solubility in water and enhanced wetting of catalyst layer caused by high temperature. The synergy of high pressure and temperature ensures high CO<small><sub>2</sub></small> flux to the catalyst surface while leveraging elevated temperatures to accelerate reaction kinetics. Therefore, the pressurized and heated CO<small><sub>2</sub></small> electrolyzer achieves an FE<small><sub>CO</sub></small> of 92% at a high current density of 2 A cm<small><sup>−2</sup></small> and a low cell voltage of 3.8 V under 10 bar and 80 °C when using 0.1 M KHCO<small><sub>3</sub></small> as the anolyte. Even when using pure water as the anolyte, the system maintains a FE<small><sub>CO</sub></small> value of 90% at 300 mA cm<small><sup>−2</sup></small> and a cell voltage of 3.6 V. Furthermore, the system demonstrates exceptional performance with dilute 10 vol% CO<small><sub>2</sub></small> feedstocks, achieving a FE<small><sub>CO</sub></small> of 96% at 100 mA cm<small><sup>−2</sup></small> and 2.4 V. These findings underscore the potential of combined temperature and pressure optimization to overcome mass transport limitations and enhance reaction kinetics, offering a viable pathway for scaling up CO<small><sub>2</sub></small> electrolyzers for industrial applications.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 4","pages":" 843-855"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d5ey00034c?page=search","citationCount":"0","resultStr":"{\"title\":\"Elevated temperature and pressure driven ampere-level CO2 electroreduction to CO in a membrane electrode assembly electrolyzer†\",\"authors\":\"Yang Li, Huiyue Liu, Jithu Raj, Mohammad Pishnamazi and Jingjie Wu\",\"doi\":\"10.1039/D5EY00034C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Achieving high selectivity for carbon monoxide (CO) in the electrochemical reduction of carbon dioxide (CO<small><sub>2</sub></small>) at industrially relevant current densities, particularly using dilute CO<small><sub>2</sub></small> feedstocks, remains a significant challenge. Herein, we demonstrate that combining elevated temperature and CO<small><sub>2</sub></small> pressure substantially enhances CO production in a membrane electrode assembly (MEA) electrolyzer using commercially available silver nanoparticles. Elevated CO<small><sub>2</sub></small> pressures increase CO<small><sub>2</sub></small> concentration and reduce the diffusion layer, counteracting the reduced CO<small><sub>2</sub></small> solubility in water and enhanced wetting of catalyst layer caused by high temperature. The synergy of high pressure and temperature ensures high CO<small><sub>2</sub></small> flux to the catalyst surface while leveraging elevated temperatures to accelerate reaction kinetics. Therefore, the pressurized and heated CO<small><sub>2</sub></small> electrolyzer achieves an FE<small><sub>CO</sub></small> of 92% at a high current density of 2 A cm<small><sup>−2</sup></small> and a low cell voltage of 3.8 V under 10 bar and 80 °C when using 0.1 M KHCO<small><sub>3</sub></small> as the anolyte. Even when using pure water as the anolyte, the system maintains a FE<small><sub>CO</sub></small> value of 90% at 300 mA cm<small><sup>−2</sup></small> and a cell voltage of 3.6 V. Furthermore, the system demonstrates exceptional performance with dilute 10 vol% CO<small><sub>2</sub></small> feedstocks, achieving a FE<small><sub>CO</sub></small> of 96% at 100 mA cm<small><sup>−2</sup></small> and 2.4 V. These findings underscore the potential of combined temperature and pressure optimization to overcome mass transport limitations and enhance reaction kinetics, offering a viable pathway for scaling up CO<small><sub>2</sub></small> electrolyzers for industrial applications.</p>\",\"PeriodicalId\":72877,\"journal\":{\"name\":\"EES catalysis\",\"volume\":\" 4\",\"pages\":\" 843-855\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d5ey00034c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EES catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ey/d5ey00034c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ey/d5ey00034c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在工业相关的电流密度下,特别是使用稀释的二氧化碳原料,在电化学还原二氧化碳(CO2)过程中实现一氧化碳(CO)的高选择性仍然是一个重大挑战。在本文中,我们证明了结合高温和二氧化碳压力可以显著提高使用市售银纳米颗粒的膜电极组件(MEA)电解槽中的CO产量。升高的CO2压力使CO2浓度升高,扩散层减少,抵消了高温引起的CO2在水中溶解度降低和催化剂层润湿增强。高压和温度的协同作用确保了高二氧化碳通量到催化剂表面,同时利用高温来加速反应动力学。因此,使用0.1 M KHCO3作为阳极液,在10 bar和80℃条件下,在2 a cm−2的高电流密度和3.8 V的低电池电压下,加压加热CO2电解槽的FECO达到92%。即使使用纯水作为阳极电解质,该系统在300 mA cm - 2和3.6 V电池电压下仍保持90%的FECO值。此外,该系统在稀释10 vol%的CO2原料下表现出优异的性能,在100 mA cm - 2和2.4 V下达到96%的FECO。这些发现强调了温度和压力组合优化在克服质量传输限制和增强反应动力学方面的潜力,为扩大工业应用的二氧化碳电解槽提供了可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Elevated temperature and pressure driven ampere-level CO2 electroreduction to CO in a membrane electrode assembly electrolyzer†

Elevated temperature and pressure driven ampere-level CO2 electroreduction to CO in a membrane electrode assembly electrolyzer†

Achieving high selectivity for carbon monoxide (CO) in the electrochemical reduction of carbon dioxide (CO2) at industrially relevant current densities, particularly using dilute CO2 feedstocks, remains a significant challenge. Herein, we demonstrate that combining elevated temperature and CO2 pressure substantially enhances CO production in a membrane electrode assembly (MEA) electrolyzer using commercially available silver nanoparticles. Elevated CO2 pressures increase CO2 concentration and reduce the diffusion layer, counteracting the reduced CO2 solubility in water and enhanced wetting of catalyst layer caused by high temperature. The synergy of high pressure and temperature ensures high CO2 flux to the catalyst surface while leveraging elevated temperatures to accelerate reaction kinetics. Therefore, the pressurized and heated CO2 electrolyzer achieves an FECO of 92% at a high current density of 2 A cm−2 and a low cell voltage of 3.8 V under 10 bar and 80 °C when using 0.1 M KHCO3 as the anolyte. Even when using pure water as the anolyte, the system maintains a FECO value of 90% at 300 mA cm−2 and a cell voltage of 3.6 V. Furthermore, the system demonstrates exceptional performance with dilute 10 vol% CO2 feedstocks, achieving a FECO of 96% at 100 mA cm−2 and 2.4 V. These findings underscore the potential of combined temperature and pressure optimization to overcome mass transport limitations and enhance reaction kinetics, offering a viable pathway for scaling up CO2 electrolyzers for industrial applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信