使用表面合金等离子体AgPt纳米棱镜的可见光催化CO2加氢

EES catalysis Pub Date : 2025-04-22 DOI:10.1039/D5EY00046G
Garv Bhardwaj, Fergus McLaren, Kishan S. Menghrajani, Sanje Mahasivam, Stefan A. Maier, Murali Sastry and Akshat Tanksale
{"title":"使用表面合金等离子体AgPt纳米棱镜的可见光催化CO2加氢","authors":"Garv Bhardwaj, Fergus McLaren, Kishan S. Menghrajani, Sanje Mahasivam, Stefan A. Maier, Murali Sastry and Akshat Tanksale","doi":"10.1039/D5EY00046G","DOIUrl":null,"url":null,"abstract":"<p >Development of suitable catalysts for light-driven CO<small><sub>2</sub></small> hydrogenation is an alluring goal in catalysis. In this study, plasmonic Ag nanoprisms were combined with Pt to make surface-alloyed nanoparticles for aqueous-phase CO<small><sub>2</sub></small> hydrogenation. The Pt loading favoured the product selectivity towards multi-electron C<small><sub>1</sub></small> products and promoted acetic acid production <em>via</em> C–C coupling. Increasing the reaction pressure further improved acetic acid production where the highest yield of 0.491 mmol g<small><sub>cat</sub></small><small><sup>−1</sup></small> was achieved at 20 bar. Within the visible-light region, the in-plane dipole resonance peak of Ag<small><sub>91</sub></small>Pt<small><sub>9</sub></small> at 600 nm contributed the highest apparent quantum yield of 26.7%. These investigations demonstrated the significance of designer plasmonic catalysts and highlighted their photocatalytic enhancement towards CO<small><sub>2</sub></small> conversion.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 4","pages":" 811-821"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d5ey00046g?page=search","citationCount":"0","resultStr":"{\"title\":\"Visible-light photocatalytic CO2 hydrogenation using surface-alloyed plasmonic AgPt nanoprisms†\",\"authors\":\"Garv Bhardwaj, Fergus McLaren, Kishan S. Menghrajani, Sanje Mahasivam, Stefan A. Maier, Murali Sastry and Akshat Tanksale\",\"doi\":\"10.1039/D5EY00046G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Development of suitable catalysts for light-driven CO<small><sub>2</sub></small> hydrogenation is an alluring goal in catalysis. In this study, plasmonic Ag nanoprisms were combined with Pt to make surface-alloyed nanoparticles for aqueous-phase CO<small><sub>2</sub></small> hydrogenation. The Pt loading favoured the product selectivity towards multi-electron C<small><sub>1</sub></small> products and promoted acetic acid production <em>via</em> C–C coupling. Increasing the reaction pressure further improved acetic acid production where the highest yield of 0.491 mmol g<small><sub>cat</sub></small><small><sup>−1</sup></small> was achieved at 20 bar. Within the visible-light region, the in-plane dipole resonance peak of Ag<small><sub>91</sub></small>Pt<small><sub>9</sub></small> at 600 nm contributed the highest apparent quantum yield of 26.7%. These investigations demonstrated the significance of designer plasmonic catalysts and highlighted their photocatalytic enhancement towards CO<small><sub>2</sub></small> conversion.</p>\",\"PeriodicalId\":72877,\"journal\":{\"name\":\"EES catalysis\",\"volume\":\" 4\",\"pages\":\" 811-821\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d5ey00046g?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EES catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ey/d5ey00046g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ey/d5ey00046g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

开发适合于光驱动CO2加氢的催化剂是催化领域一个诱人的目标。在本研究中,等离子体银纳米棱镜与铂结合制成表面合金纳米颗粒,用于水相CO2加氢。Pt负载有利于产物对多电子C1产物的选择性,促进了C-C偶联生成乙酸。增加反应压力进一步提高了乙酸的产率,在20 bar条件下乙酸的产率最高,为0.491 mmol gcat−1。在可见光区,Ag91Pt9在600 nm处的面内偶极共振峰贡献了最高的表观量子产率,达到26.7%。这些研究证明了设计等离子体催化剂的重要性,并强调了它们对CO2转化的光催化增强作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Visible-light photocatalytic CO2 hydrogenation using surface-alloyed plasmonic AgPt nanoprisms†

Visible-light photocatalytic CO2 hydrogenation using surface-alloyed plasmonic AgPt nanoprisms†

Development of suitable catalysts for light-driven CO2 hydrogenation is an alluring goal in catalysis. In this study, plasmonic Ag nanoprisms were combined with Pt to make surface-alloyed nanoparticles for aqueous-phase CO2 hydrogenation. The Pt loading favoured the product selectivity towards multi-electron C1 products and promoted acetic acid production via C–C coupling. Increasing the reaction pressure further improved acetic acid production where the highest yield of 0.491 mmol gcat−1 was achieved at 20 bar. Within the visible-light region, the in-plane dipole resonance peak of Ag91Pt9 at 600 nm contributed the highest apparent quantum yield of 26.7%. These investigations demonstrated the significance of designer plasmonic catalysts and highlighted their photocatalytic enhancement towards CO2 conversion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信