掺钇Hf 0 .₅Zr 0。₅O₂基铁电电容器,在4 K时表现出无疲劳(>10₁₂循环),长保留和抗压性能

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
A. Agarwal;A. M. Walke;N. Ronchi;M. I. Popovici;W. C. Y. Ma;C. J. Su;K. H. Kao;Jan Van Houdt
{"title":"掺钇Hf 0 .₅Zr 0。₅O₂基铁电电容器,在4 K时表现出无疲劳(>10₁₂循环),长保留和抗压性能","authors":"A. Agarwal;A. M. Walke;N. Ronchi;M. I. Popovici;W. C. Y. Ma;C. J. Su;K. H. Kao;Jan Van Houdt","doi":"10.1109/LED.2025.3562798","DOIUrl":null,"url":null,"abstract":"This work demonstrates the first electrical characterization of yttrium-doped <inline-formula> <tex-math>${\\mathrm {Hf}}_{\\mathbf {{0}.{5}}}$ </tex-math></inline-formula> <inline-formula> <tex-math>${\\mathrm {Zr}}_{\\mathbf {{0}.{5}}}$ </tex-math></inline-formula><inline-formula> <tex-math>${\\mathrm {O}}_{\\mathbf {{2}}}$ </tex-math></inline-formula>-based ferroelectric capacitors (Y-HZO caps) at cryogenic temperatures down to 4 K, highlighting their superior endurance and reliability. Owing to a decrease in oxygen vacancy (O-vacancy) distribution and less domain pinning (due to reduced trapping) at cryogenic temperatures, the fast pulse characterization reveals 2Pr <inline-formula> <tex-math>$\\sim ~20~\\mu $ </tex-math></inline-formula><inline-formula> <tex-math>${\\mathrm {C/cm}}^{\\mathbf {{2}}}$ </tex-math></inline-formula> of Y-HZO caps at 4 K, showing >33% improvement compared to results at 300 K. Notably, the Y-HZO caps show fatigue-free endurance up to <inline-formula> <tex-math>$10^{\\mathbf {{12}}}$ </tex-math></inline-formula> cycles at 4 K, while undoped <inline-formula> <tex-math>${\\mathrm {Hf}}_{\\mathbf {{0}.{5}}}$ </tex-math></inline-formula><inline-formula> <tex-math>${\\mathrm {Zr}}_{\\mathbf {{0}.{5}}}$ </tex-math></inline-formula> <inline-formula> <tex-math>${\\mathrm {O}}_{\\mathbf {{2}}}$ </tex-math></inline-formula> ferroelectric capacitors (HZO caps) exhibit slight fatigue. Both capacitors (caps) show imprint immunity an long retention (<inline-formula> <tex-math>$\\gt 10^{\\mathbf {{5}}}$ </tex-math></inline-formula>s). A key observation is that while HZO caps do not require wake-up at 4 K, Y-HZO caps show an anti-ferroelectric behavior, implying wake-up operation cannot be performed in Y-HZO caps at 4 K. The Y-HZO caps must be woken up at 300 K before further electrical analysis at 4 K. These findings point towards the reduced mobility of charged defects and O-vacancies significantly suppressing the domain de-pinning process at 4 K, which plays an essential part in the wake-up and fatigue of these ferroelectric capacitors. The time-dependent dielectric break- down (TDDB) analysis also points towards improved reliability of both the caps at 4 K. These improved characteristics and reliability of Y-HZO caps make them an attractive choice for cryogenic memory applications like quantum and neuromorphic computing.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 7","pages":"1095-1098"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Yttrium Doped Hf₀.₅Zr₀.₅O₂ Based Ferroelectric Capacitor Exhibiting Fatigue Free (>10₁₂ Cycles), Long Retention, and Imprint Immune Performance at 4 K\",\"authors\":\"A. Agarwal;A. M. Walke;N. Ronchi;M. I. Popovici;W. C. Y. Ma;C. J. Su;K. H. Kao;Jan Van Houdt\",\"doi\":\"10.1109/LED.2025.3562798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work demonstrates the first electrical characterization of yttrium-doped <inline-formula> <tex-math>${\\\\mathrm {Hf}}_{\\\\mathbf {{0}.{5}}}$ </tex-math></inline-formula> <inline-formula> <tex-math>${\\\\mathrm {Zr}}_{\\\\mathbf {{0}.{5}}}$ </tex-math></inline-formula><inline-formula> <tex-math>${\\\\mathrm {O}}_{\\\\mathbf {{2}}}$ </tex-math></inline-formula>-based ferroelectric capacitors (Y-HZO caps) at cryogenic temperatures down to 4 K, highlighting their superior endurance and reliability. Owing to a decrease in oxygen vacancy (O-vacancy) distribution and less domain pinning (due to reduced trapping) at cryogenic temperatures, the fast pulse characterization reveals 2Pr <inline-formula> <tex-math>$\\\\sim ~20~\\\\mu $ </tex-math></inline-formula><inline-formula> <tex-math>${\\\\mathrm {C/cm}}^{\\\\mathbf {{2}}}$ </tex-math></inline-formula> of Y-HZO caps at 4 K, showing >33% improvement compared to results at 300 K. Notably, the Y-HZO caps show fatigue-free endurance up to <inline-formula> <tex-math>$10^{\\\\mathbf {{12}}}$ </tex-math></inline-formula> cycles at 4 K, while undoped <inline-formula> <tex-math>${\\\\mathrm {Hf}}_{\\\\mathbf {{0}.{5}}}$ </tex-math></inline-formula><inline-formula> <tex-math>${\\\\mathrm {Zr}}_{\\\\mathbf {{0}.{5}}}$ </tex-math></inline-formula> <inline-formula> <tex-math>${\\\\mathrm {O}}_{\\\\mathbf {{2}}}$ </tex-math></inline-formula> ferroelectric capacitors (HZO caps) exhibit slight fatigue. Both capacitors (caps) show imprint immunity an long retention (<inline-formula> <tex-math>$\\\\gt 10^{\\\\mathbf {{5}}}$ </tex-math></inline-formula>s). A key observation is that while HZO caps do not require wake-up at 4 K, Y-HZO caps show an anti-ferroelectric behavior, implying wake-up operation cannot be performed in Y-HZO caps at 4 K. The Y-HZO caps must be woken up at 300 K before further electrical analysis at 4 K. These findings point towards the reduced mobility of charged defects and O-vacancies significantly suppressing the domain de-pinning process at 4 K, which plays an essential part in the wake-up and fatigue of these ferroelectric capacitors. The time-dependent dielectric break- down (TDDB) analysis also points towards improved reliability of both the caps at 4 K. These improved characteristics and reliability of Y-HZO caps make them an attractive choice for cryogenic memory applications like quantum and neuromorphic computing.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"46 7\",\"pages\":\"1095-1098\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10971355/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10971355/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

这项工作首次展示了在低温低至4 K的情况下,钇掺杂${\mathrm {Hf}}_{\mathbf {{0}.{5}}}$${\mathrm {Zr}}_{\mathbf {{0}.{5}}}$${\mathrm {O}}_{\mathbf {{2}}}$基铁电电容器(Y-HZO帽)的电学特性,突出了其优越的耐久性和可靠性。由于低温下氧空位(o -空位)分布减少,畴钉钉减少(由于捕获减少),Y-HZO帽在4k时的快速脉冲表征显示2Pr $\sim ~20~\mu $${\mathrm {C/cm}}^{\mathbf {{2}}}$,显示>33% improvement compared to results at 300 K. Notably, the Y-HZO caps show fatigue-free endurance up to $10^{\mathbf {{12}}}$ cycles at 4 K, while undoped ${\mathrm {Hf}}_{\mathbf {{0}.{5}}}$ ${\mathrm {Zr}}_{\mathbf {{0}.{5}}}$ ${\mathrm {O}}_{\mathbf {{2}}}$ ferroelectric capacitors (HZO caps) exhibit slight fatigue. Both capacitors (caps) show imprint immunity an long retention ( $\gt 10^{\mathbf {{5}}}$ s). A key observation is that while HZO caps do not require wake-up at 4 K, Y-HZO caps show an anti-ferroelectric behavior, implying wake-up operation cannot be performed in Y-HZO caps at 4 K. The Y-HZO caps must be woken up at 300 K before further electrical analysis at 4 K. These findings point towards the reduced mobility of charged defects and O-vacancies significantly suppressing the domain de-pinning process at 4 K, which plays an essential part in the wake-up and fatigue of these ferroelectric capacitors. The time-dependent dielectric break- down (TDDB) analysis also points towards improved reliability of both the caps at 4 K. These improved characteristics and reliability of Y-HZO caps make them an attractive choice for cryogenic memory applications like quantum and neuromorphic computing.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Yttrium Doped Hf₀.₅Zr₀.₅O₂ Based Ferroelectric Capacitor Exhibiting Fatigue Free (>10₁₂ Cycles), Long Retention, and Imprint Immune Performance at 4 K
This work demonstrates the first electrical characterization of yttrium-doped ${\mathrm {Hf}}_{\mathbf {{0}.{5}}}$ ${\mathrm {Zr}}_{\mathbf {{0}.{5}}}$ ${\mathrm {O}}_{\mathbf {{2}}}$ -based ferroelectric capacitors (Y-HZO caps) at cryogenic temperatures down to 4 K, highlighting their superior endurance and reliability. Owing to a decrease in oxygen vacancy (O-vacancy) distribution and less domain pinning (due to reduced trapping) at cryogenic temperatures, the fast pulse characterization reveals 2Pr $\sim ~20~\mu $ ${\mathrm {C/cm}}^{\mathbf {{2}}}$ of Y-HZO caps at 4 K, showing >33% improvement compared to results at 300 K. Notably, the Y-HZO caps show fatigue-free endurance up to $10^{\mathbf {{12}}}$ cycles at 4 K, while undoped ${\mathrm {Hf}}_{\mathbf {{0}.{5}}}$ ${\mathrm {Zr}}_{\mathbf {{0}.{5}}}$ ${\mathrm {O}}_{\mathbf {{2}}}$ ferroelectric capacitors (HZO caps) exhibit slight fatigue. Both capacitors (caps) show imprint immunity an long retention ( $\gt 10^{\mathbf {{5}}}$ s). A key observation is that while HZO caps do not require wake-up at 4 K, Y-HZO caps show an anti-ferroelectric behavior, implying wake-up operation cannot be performed in Y-HZO caps at 4 K. The Y-HZO caps must be woken up at 300 K before further electrical analysis at 4 K. These findings point towards the reduced mobility of charged defects and O-vacancies significantly suppressing the domain de-pinning process at 4 K, which plays an essential part in the wake-up and fatigue of these ferroelectric capacitors. The time-dependent dielectric break- down (TDDB) analysis also points towards improved reliability of both the caps at 4 K. These improved characteristics and reliability of Y-HZO caps make them an attractive choice for cryogenic memory applications like quantum and neuromorphic computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信