具有远程控制的超快速多响应各向异性纳米纤维驱动器。

Zijun Zhu, Lantao He, Tingxu Guo, Tong Shao, Jianwu Lan, Shaojian Lin, Patrick Theato, Jiaojiao Shang
{"title":"具有远程控制的超快速多响应各向异性纳米纤维驱动器。","authors":"Zijun Zhu, Lantao He, Tingxu Guo, Tong Shao, Jianwu Lan, Shaojian Lin, Patrick Theato, Jiaojiao Shang","doi":"10.1039/d5tb01168j","DOIUrl":null,"url":null,"abstract":"<p><p>The development of high-performance soft actuators capable of integrating multimodal responsiveness, ultrafast actuation, and programmable deformation remains a critical challenge in soft robotics, primarily due to inherent limitations in current hydrogel-based and elastomer-based systems. These conventional actuators often suffer from compromised functionality, slow response kinetics, and complex fabrication processes. Herein, we present an anisotropic nanofibrous actuator platform that overcomes these limitations through the synergistic combination of structurally aligned electrospun nanofibers and multi-stimulus responsive polymer composites. Our design uniquely integrates three independent actuation mechanisms-thermoresponsive poly(<i>N</i>-isopropyl acrylamide-<i>co</i>-4-acryloyl benzophenone) (P(NIPAM-<i>co</i>-ABP)), photothermally active gold nanoparticles, and pH-sensitive poly(diethylaminoethyl methacrylate-<i>co</i>-methyl methacrylate-<i>co</i>-4-acryloyl benzophenone) (P(DEAEMA-<i>co</i>-MMA-<i>co</i>-ABP))-within an oriented nanofibrous architecture. Precise control of fiber alignment through electrospinning techniques enables programmable directional bending responses, while the bilayer configuration facilitates asymmetric deformation through differential swelling behavior. The highly porous nanofibrous network architecture provides rapid mass transport pathways, yielding exceptional actuation speeds (<0.3 s, 360°) that surpass conventional hydrogel-based systems. Furthermore, the actuator still maintains its rapid responsiveness in the air (4 s, 35°). Additionally, the aligned nanofiber morphology contributes to remarkable mechanical robustness, supporting loads up to 178 times its own mass. This work establishes a versatile materials platform that addresses critical challenges in soft robotics by combining multimodal environmental responsiveness, ultrafast actuation kinetics, and programmable deformation control through a scalable fabrication approach. The design principles demonstrated here provide new opportunities for developing advanced soft robotic systems with biomimetic functionality and enhanced performance characteristics.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-fast and multi-responsive anisotropic nanofibrous actuator with remote control.\",\"authors\":\"Zijun Zhu, Lantao He, Tingxu Guo, Tong Shao, Jianwu Lan, Shaojian Lin, Patrick Theato, Jiaojiao Shang\",\"doi\":\"10.1039/d5tb01168j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of high-performance soft actuators capable of integrating multimodal responsiveness, ultrafast actuation, and programmable deformation remains a critical challenge in soft robotics, primarily due to inherent limitations in current hydrogel-based and elastomer-based systems. These conventional actuators often suffer from compromised functionality, slow response kinetics, and complex fabrication processes. Herein, we present an anisotropic nanofibrous actuator platform that overcomes these limitations through the synergistic combination of structurally aligned electrospun nanofibers and multi-stimulus responsive polymer composites. Our design uniquely integrates three independent actuation mechanisms-thermoresponsive poly(<i>N</i>-isopropyl acrylamide-<i>co</i>-4-acryloyl benzophenone) (P(NIPAM-<i>co</i>-ABP)), photothermally active gold nanoparticles, and pH-sensitive poly(diethylaminoethyl methacrylate-<i>co</i>-methyl methacrylate-<i>co</i>-4-acryloyl benzophenone) (P(DEAEMA-<i>co</i>-MMA-<i>co</i>-ABP))-within an oriented nanofibrous architecture. Precise control of fiber alignment through electrospinning techniques enables programmable directional bending responses, while the bilayer configuration facilitates asymmetric deformation through differential swelling behavior. The highly porous nanofibrous network architecture provides rapid mass transport pathways, yielding exceptional actuation speeds (<0.3 s, 360°) that surpass conventional hydrogel-based systems. Furthermore, the actuator still maintains its rapid responsiveness in the air (4 s, 35°). Additionally, the aligned nanofiber morphology contributes to remarkable mechanical robustness, supporting loads up to 178 times its own mass. This work establishes a versatile materials platform that addresses critical challenges in soft robotics by combining multimodal environmental responsiveness, ultrafast actuation kinetics, and programmable deformation control through a scalable fabrication approach. The design principles demonstrated here provide new opportunities for developing advanced soft robotic systems with biomimetic functionality and enhanced performance characteristics.</p>\",\"PeriodicalId\":94089,\"journal\":{\"name\":\"Journal of materials chemistry. B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of materials chemistry. B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/d5tb01168j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5tb01168j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于目前基于水凝胶和弹性体的系统的固有局限性,开发能够集成多模态响应、超快速驱动和可编程变形的高性能软执行器仍然是软机器人的一个关键挑战。这些传统的执行器通常存在功能受损、响应动力学缓慢和制造工艺复杂的问题。在此,我们提出了一种各向异性纳米纤维致动器平台,通过结构排列的静电纺纳米纤维和多刺激响应聚合物复合材料的协同结合,克服了这些限制。我们的设计独特地集成了三种独立的驱动机制-热响应性聚(n -异丙基丙烯酰胺-co-4-丙烯酰二苯甲酮)(P(NIPAM-co-ABP)),光热活性金纳米颗粒和ph敏感性聚(二乙基氨基甲基丙烯酸乙酯-co-甲基丙烯酸甲酯-co-4-丙烯酰二苯甲酮)(P(deama -co- mma -co- abp))-在定向纳米纤维结构中。通过静电纺丝技术精确控制纤维排列,实现可编程的定向弯曲响应,而双层结构通过不同的膨胀行为促进不对称变形。高度多孔的纳米纤维网络结构提供了快速的质量传输途径,产生了卓越的驱动速度(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultra-fast and multi-responsive anisotropic nanofibrous actuator with remote control.

The development of high-performance soft actuators capable of integrating multimodal responsiveness, ultrafast actuation, and programmable deformation remains a critical challenge in soft robotics, primarily due to inherent limitations in current hydrogel-based and elastomer-based systems. These conventional actuators often suffer from compromised functionality, slow response kinetics, and complex fabrication processes. Herein, we present an anisotropic nanofibrous actuator platform that overcomes these limitations through the synergistic combination of structurally aligned electrospun nanofibers and multi-stimulus responsive polymer composites. Our design uniquely integrates three independent actuation mechanisms-thermoresponsive poly(N-isopropyl acrylamide-co-4-acryloyl benzophenone) (P(NIPAM-co-ABP)), photothermally active gold nanoparticles, and pH-sensitive poly(diethylaminoethyl methacrylate-co-methyl methacrylate-co-4-acryloyl benzophenone) (P(DEAEMA-co-MMA-co-ABP))-within an oriented nanofibrous architecture. Precise control of fiber alignment through electrospinning techniques enables programmable directional bending responses, while the bilayer configuration facilitates asymmetric deformation through differential swelling behavior. The highly porous nanofibrous network architecture provides rapid mass transport pathways, yielding exceptional actuation speeds (<0.3 s, 360°) that surpass conventional hydrogel-based systems. Furthermore, the actuator still maintains its rapid responsiveness in the air (4 s, 35°). Additionally, the aligned nanofiber morphology contributes to remarkable mechanical robustness, supporting loads up to 178 times its own mass. This work establishes a versatile materials platform that addresses critical challenges in soft robotics by combining multimodal environmental responsiveness, ultrafast actuation kinetics, and programmable deformation control through a scalable fabrication approach. The design principles demonstrated here provide new opportunities for developing advanced soft robotic systems with biomimetic functionality and enhanced performance characteristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信