María Ángeles García-Esparza, Eva María Mateo, José Antonio Robles, Michela Capoferri, Misericordia Jiménez, José Miguel Soria
{"title":"揭示赭曲霉毒素A的神经毒性作用及其对神经炎症的影响。","authors":"María Ángeles García-Esparza, Eva María Mateo, José Antonio Robles, Michela Capoferri, Misericordia Jiménez, José Miguel Soria","doi":"10.3390/toxins17060264","DOIUrl":null,"url":null,"abstract":"<p><p>Ochratoxin A (OTA), a toxic compound generated by <i>Aspergillus</i> and <i>Penicillium</i> fungi, is a common contaminant in different food and animal feed sources, thereby posing possible dangers to human well-being. Although OTA is widely recognized for its kidney-damaging properties, new findings have also indicated its potential to harm the nervous system. Current research trends have increasingly examined the part played by environmental poisons, such as mycotoxins, in the development of diseases. This systematic review gathers and assesses the features of OTA along with the insights acquired from studies on its neurotoxicity. This work presents recent research that demonstrates some mechanisms by which OTA crosses the intestinal and blood-brain barriers, penetrating neural structures. In addition, it discusses the effect of OTA on several types of neural cells and its roles in apoptosis, neuroinflammation, and neurogenesis defects, while also determining the effects of antioxidant systems that neutralize the effects of OTA. This paper identifies crucial gaps in the research and highlights the necessity for further in-depth studies into how OTA affects the processes underlying neurodegeneration. Filling these knowledge gaps could provide valuable insights into the neurotoxic potential of OTA and its relevance to neurological disorders.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"17 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12197389/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Neurotoxic Effects of Ochratoxin A and Its Impact on Neuroinflammation.\",\"authors\":\"María Ángeles García-Esparza, Eva María Mateo, José Antonio Robles, Michela Capoferri, Misericordia Jiménez, José Miguel Soria\",\"doi\":\"10.3390/toxins17060264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ochratoxin A (OTA), a toxic compound generated by <i>Aspergillus</i> and <i>Penicillium</i> fungi, is a common contaminant in different food and animal feed sources, thereby posing possible dangers to human well-being. Although OTA is widely recognized for its kidney-damaging properties, new findings have also indicated its potential to harm the nervous system. Current research trends have increasingly examined the part played by environmental poisons, such as mycotoxins, in the development of diseases. This systematic review gathers and assesses the features of OTA along with the insights acquired from studies on its neurotoxicity. This work presents recent research that demonstrates some mechanisms by which OTA crosses the intestinal and blood-brain barriers, penetrating neural structures. In addition, it discusses the effect of OTA on several types of neural cells and its roles in apoptosis, neuroinflammation, and neurogenesis defects, while also determining the effects of antioxidant systems that neutralize the effects of OTA. This paper identifies crucial gaps in the research and highlights the necessity for further in-depth studies into how OTA affects the processes underlying neurodegeneration. Filling these knowledge gaps could provide valuable insights into the neurotoxic potential of OTA and its relevance to neurological disorders.</p>\",\"PeriodicalId\":23119,\"journal\":{\"name\":\"Toxins\",\"volume\":\"17 6\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12197389/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxins\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/toxins17060264\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins17060264","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Unveiling the Neurotoxic Effects of Ochratoxin A and Its Impact on Neuroinflammation.
Ochratoxin A (OTA), a toxic compound generated by Aspergillus and Penicillium fungi, is a common contaminant in different food and animal feed sources, thereby posing possible dangers to human well-being. Although OTA is widely recognized for its kidney-damaging properties, new findings have also indicated its potential to harm the nervous system. Current research trends have increasingly examined the part played by environmental poisons, such as mycotoxins, in the development of diseases. This systematic review gathers and assesses the features of OTA along with the insights acquired from studies on its neurotoxicity. This work presents recent research that demonstrates some mechanisms by which OTA crosses the intestinal and blood-brain barriers, penetrating neural structures. In addition, it discusses the effect of OTA on several types of neural cells and its roles in apoptosis, neuroinflammation, and neurogenesis defects, while also determining the effects of antioxidant systems that neutralize the effects of OTA. This paper identifies crucial gaps in the research and highlights the necessity for further in-depth studies into how OTA affects the processes underlying neurodegeneration. Filling these knowledge gaps could provide valuable insights into the neurotoxic potential of OTA and its relevance to neurological disorders.
期刊介绍:
Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.