Maximilian Tschochohei, Lisa Christine Adams, Keno Kyrill Bressem, Jacqueline Lammert
{"title":"[人工智能临床决策支持系统:挑战与机遇]。","authors":"Maximilian Tschochohei, Lisa Christine Adams, Keno Kyrill Bressem, Jacqueline Lammert","doi":"10.1007/s00103-025-04092-8","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical decision-making is inherently complex, time-sensitive, and prone to error. AI-enabled clinical decision support systems (CDSS) offer promising solutions by leveraging large datasets to provide evidence-based recommendations. These systems range from rule-based and knowledge-based to increasingly AI-driven approaches. However, key challenges persist, particularly concerning data quality, seamless integration into clinical workflows, and clinician trust and acceptance. Ethical and legal considerations, especially data privacy, are also paramount.AI-CDSS have demonstrated success in fields like radiology (e.g., pulmonary nodule detection, mammography interpretation) and cardiology, where they enhance diagnostic accuracy and improve patient outcomes. Looking ahead, chat and voice interfaces powered by large language models (LLMs) could support shared decision-making (SDM) by fostering better patient engagement and understanding.To fully realize the potential of AI-CDSS in advancing efficient, patient-centered care, it is essential to ensure their responsible development. This includes grounding AI models in domain-specific data, anonymizing user inputs, and implementing rigorous validation of AI-generated outputs before presentation. Thoughtful design and ethical oversight will be critical to integrating AI safely and effectively into clinical practice.</p>","PeriodicalId":9562,"journal":{"name":"Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[AI-enabled clinical decision support systems: challenges and opportunities].\",\"authors\":\"Maximilian Tschochohei, Lisa Christine Adams, Keno Kyrill Bressem, Jacqueline Lammert\",\"doi\":\"10.1007/s00103-025-04092-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clinical decision-making is inherently complex, time-sensitive, and prone to error. AI-enabled clinical decision support systems (CDSS) offer promising solutions by leveraging large datasets to provide evidence-based recommendations. These systems range from rule-based and knowledge-based to increasingly AI-driven approaches. However, key challenges persist, particularly concerning data quality, seamless integration into clinical workflows, and clinician trust and acceptance. Ethical and legal considerations, especially data privacy, are also paramount.AI-CDSS have demonstrated success in fields like radiology (e.g., pulmonary nodule detection, mammography interpretation) and cardiology, where they enhance diagnostic accuracy and improve patient outcomes. Looking ahead, chat and voice interfaces powered by large language models (LLMs) could support shared decision-making (SDM) by fostering better patient engagement and understanding.To fully realize the potential of AI-CDSS in advancing efficient, patient-centered care, it is essential to ensure their responsible development. This includes grounding AI models in domain-specific data, anonymizing user inputs, and implementing rigorous validation of AI-generated outputs before presentation. Thoughtful design and ethical oversight will be critical to integrating AI safely and effectively into clinical practice.</p>\",\"PeriodicalId\":9562,\"journal\":{\"name\":\"Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00103-025-04092-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00103-025-04092-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
[AI-enabled clinical decision support systems: challenges and opportunities].
Clinical decision-making is inherently complex, time-sensitive, and prone to error. AI-enabled clinical decision support systems (CDSS) offer promising solutions by leveraging large datasets to provide evidence-based recommendations. These systems range from rule-based and knowledge-based to increasingly AI-driven approaches. However, key challenges persist, particularly concerning data quality, seamless integration into clinical workflows, and clinician trust and acceptance. Ethical and legal considerations, especially data privacy, are also paramount.AI-CDSS have demonstrated success in fields like radiology (e.g., pulmonary nodule detection, mammography interpretation) and cardiology, where they enhance diagnostic accuracy and improve patient outcomes. Looking ahead, chat and voice interfaces powered by large language models (LLMs) could support shared decision-making (SDM) by fostering better patient engagement and understanding.To fully realize the potential of AI-CDSS in advancing efficient, patient-centered care, it is essential to ensure their responsible development. This includes grounding AI models in domain-specific data, anonymizing user inputs, and implementing rigorous validation of AI-generated outputs before presentation. Thoughtful design and ethical oversight will be critical to integrating AI safely and effectively into clinical practice.
期刊介绍:
Die Monatszeitschrift Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz - umfasst alle Fragestellungen und Bereiche, mit denen sich das öffentliche Gesundheitswesen und die staatliche Gesundheitspolitik auseinandersetzen.
Ziel ist es, zum einen über wesentliche Entwicklungen in der biologisch-medizinischen Grundlagenforschung auf dem Laufenden zu halten und zum anderen über konkrete Maßnahmen zum Gesundheitsschutz, über Konzepte der Prävention, Risikoabwehr und Gesundheitsförderung zu informieren. Wichtige Themengebiete sind die Epidemiologie übertragbarer und nicht übertragbarer Krankheiten, der umweltbezogene Gesundheitsschutz sowie gesundheitsökonomische, medizinethische und -rechtliche Fragestellungen.