[人工智能临床决策支持系统:挑战与机遇]。

IF 1.7 4区 医学 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Maximilian Tschochohei, Lisa Christine Adams, Keno Kyrill Bressem, Jacqueline Lammert
{"title":"[人工智能临床决策支持系统:挑战与机遇]。","authors":"Maximilian Tschochohei, Lisa Christine Adams, Keno Kyrill Bressem, Jacqueline Lammert","doi":"10.1007/s00103-025-04092-8","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical decision-making is inherently complex, time-sensitive, and prone to error. AI-enabled clinical decision support systems (CDSS) offer promising solutions by leveraging large datasets to provide evidence-based recommendations. These systems range from rule-based and knowledge-based to increasingly AI-driven approaches. However, key challenges persist, particularly concerning data quality, seamless integration into clinical workflows, and clinician trust and acceptance. Ethical and legal considerations, especially data privacy, are also paramount.AI-CDSS have demonstrated success in fields like radiology (e.g., pulmonary nodule detection, mammography interpretation) and cardiology, where they enhance diagnostic accuracy and improve patient outcomes. Looking ahead, chat and voice interfaces powered by large language models (LLMs) could support shared decision-making (SDM) by fostering better patient engagement and understanding.To fully realize the potential of AI-CDSS in advancing efficient, patient-centered care, it is essential to ensure their responsible development. This includes grounding AI models in domain-specific data, anonymizing user inputs, and implementing rigorous validation of AI-generated outputs before presentation. Thoughtful design and ethical oversight will be critical to integrating AI safely and effectively into clinical practice.</p>","PeriodicalId":9562,"journal":{"name":"Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[AI-enabled clinical decision support systems: challenges and opportunities].\",\"authors\":\"Maximilian Tschochohei, Lisa Christine Adams, Keno Kyrill Bressem, Jacqueline Lammert\",\"doi\":\"10.1007/s00103-025-04092-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clinical decision-making is inherently complex, time-sensitive, and prone to error. AI-enabled clinical decision support systems (CDSS) offer promising solutions by leveraging large datasets to provide evidence-based recommendations. These systems range from rule-based and knowledge-based to increasingly AI-driven approaches. However, key challenges persist, particularly concerning data quality, seamless integration into clinical workflows, and clinician trust and acceptance. Ethical and legal considerations, especially data privacy, are also paramount.AI-CDSS have demonstrated success in fields like radiology (e.g., pulmonary nodule detection, mammography interpretation) and cardiology, where they enhance diagnostic accuracy and improve patient outcomes. Looking ahead, chat and voice interfaces powered by large language models (LLMs) could support shared decision-making (SDM) by fostering better patient engagement and understanding.To fully realize the potential of AI-CDSS in advancing efficient, patient-centered care, it is essential to ensure their responsible development. This includes grounding AI models in domain-specific data, anonymizing user inputs, and implementing rigorous validation of AI-generated outputs before presentation. Thoughtful design and ethical oversight will be critical to integrating AI safely and effectively into clinical practice.</p>\",\"PeriodicalId\":9562,\"journal\":{\"name\":\"Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00103-025-04092-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00103-025-04092-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

临床决策本质上是复杂的,时间敏感的,而且容易出错。人工智能临床决策支持系统(CDSS)通过利用大型数据集提供基于证据的建议,提供了有前途的解决方案。这些系统的范围从基于规则和知识到越来越多的人工智能驱动的方法。然而,关键的挑战仍然存在,特别是在数据质量、与临床工作流程的无缝集成以及临床医生的信任和接受方面。道德和法律方面的考虑,尤其是数据隐私,也至关重要。人工智能- cdss在放射学(如肺结节检测、乳房x线摄影解释)和心脏病学等领域取得了成功,提高了诊断准确性并改善了患者的预后。展望未来,由大型语言模型(llm)驱动的聊天和语音界面可以通过促进更好的患者参与和理解来支持共享决策(SDM)。为了充分发挥AI-CDSS在推进高效、以患者为中心的护理方面的潜力,必须确保其负责任的发展。这包括将AI模型建立在特定领域的数据中,匿名化用户输入,并在演示之前对AI生成的输出进行严格验证。经过深思熟虑的设计和道德监督对于将人工智能安全有效地融入临床实践至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[AI-enabled clinical decision support systems: challenges and opportunities].

Clinical decision-making is inherently complex, time-sensitive, and prone to error. AI-enabled clinical decision support systems (CDSS) offer promising solutions by leveraging large datasets to provide evidence-based recommendations. These systems range from rule-based and knowledge-based to increasingly AI-driven approaches. However, key challenges persist, particularly concerning data quality, seamless integration into clinical workflows, and clinician trust and acceptance. Ethical and legal considerations, especially data privacy, are also paramount.AI-CDSS have demonstrated success in fields like radiology (e.g., pulmonary nodule detection, mammography interpretation) and cardiology, where they enhance diagnostic accuracy and improve patient outcomes. Looking ahead, chat and voice interfaces powered by large language models (LLMs) could support shared decision-making (SDM) by fostering better patient engagement and understanding.To fully realize the potential of AI-CDSS in advancing efficient, patient-centered care, it is essential to ensure their responsible development. This includes grounding AI models in domain-specific data, anonymizing user inputs, and implementing rigorous validation of AI-generated outputs before presentation. Thoughtful design and ethical oversight will be critical to integrating AI safely and effectively into clinical practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz
Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.30
自引率
5.90%
发文量
145
审稿时长
3-8 weeks
期刊介绍: Die Monatszeitschrift Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz - umfasst alle Fragestellungen und Bereiche, mit denen sich das öffentliche Gesundheitswesen und die staatliche Gesundheitspolitik auseinandersetzen. Ziel ist es, zum einen über wesentliche Entwicklungen in der biologisch-medizinischen Grundlagenforschung auf dem Laufenden zu halten und zum anderen über konkrete Maßnahmen zum Gesundheitsschutz, über Konzepte der Prävention, Risikoabwehr und Gesundheitsförderung zu informieren. Wichtige Themengebiete sind die Epidemiologie übertragbarer und nicht übertragbarer Krankheiten, der umweltbezogene Gesundheitsschutz sowie gesundheitsökonomische, medizinethische und -rechtliche Fragestellungen.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信