iGTP:学习可解释的细胞嵌入,以推断单细胞转录组学的生物学机制。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Kang-Lin Hsieh, Kai Zhang, Yan Chu, Lishan Yu, Xiaoyang Li, Nuo Hu, Isha Kawosa, Patrick G Pilié, Pratip K Bhattacharya, Degui Zhi, Xiaoqian Jiang, Zhongming Zhao, Yulin Dai
{"title":"iGTP:学习可解释的细胞嵌入,以推断单细胞转录组学的生物学机制。","authors":"Kang-Lin Hsieh, Kai Zhang, Yan Chu, Lishan Yu, Xiaoyang Li, Nuo Hu, Isha Kawosa, Patrick G Pilié, Pratip K Bhattacharya, Degui Zhi, Xiaoqian Jiang, Zhongming Zhao, Yulin Dai","doi":"10.1093/bib/bbaf296","DOIUrl":null,"url":null,"abstract":"<p><p>Deep-learning models like Variational AutoEncoder have enabled low dimensional cellular embedding representation for large-scale single-cell transcriptomes and shown great flexibility in downstream tasks. However, biologically meaningful latent space is usually missing if no specific structure is designed. Here, we engineered a novel interpretable generative transcriptional program (iGTP) framework that could model the importance of transcriptional program (TP) space and protein-protein interactions (PPI) between different biological states. We demonstrated the performance of iGTP in a diverse biological context using gene ontology, canonical pathway, and different PPI curation. iGTP not only elucidated the ground truth of cellular responses but also surpassed other deep learning models and traditional bioinformatics methods in functional enrichment tasks. By integrating the latent layer with a graph neural network framework, iGTP could effectively infer cellular responses to perturbations. Lastly, we applied iGTP TP embeddings with a latent diffusion model to accurately generate cell embeddings for specific cell types and states. We anticipate that iGTP will offer insights at both PPI and TP levels and holds promise for predicting responses to novel perturbations.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12206099/pdf/","citationCount":"0","resultStr":"{\"title\":\"iGTP: learning interpretable cellular embedding for inferring biological mechanisms underlying single-cell transcriptomics.\",\"authors\":\"Kang-Lin Hsieh, Kai Zhang, Yan Chu, Lishan Yu, Xiaoyang Li, Nuo Hu, Isha Kawosa, Patrick G Pilié, Pratip K Bhattacharya, Degui Zhi, Xiaoqian Jiang, Zhongming Zhao, Yulin Dai\",\"doi\":\"10.1093/bib/bbaf296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep-learning models like Variational AutoEncoder have enabled low dimensional cellular embedding representation for large-scale single-cell transcriptomes and shown great flexibility in downstream tasks. However, biologically meaningful latent space is usually missing if no specific structure is designed. Here, we engineered a novel interpretable generative transcriptional program (iGTP) framework that could model the importance of transcriptional program (TP) space and protein-protein interactions (PPI) between different biological states. We demonstrated the performance of iGTP in a diverse biological context using gene ontology, canonical pathway, and different PPI curation. iGTP not only elucidated the ground truth of cellular responses but also surpassed other deep learning models and traditional bioinformatics methods in functional enrichment tasks. By integrating the latent layer with a graph neural network framework, iGTP could effectively infer cellular responses to perturbations. Lastly, we applied iGTP TP embeddings with a latent diffusion model to accurately generate cell embeddings for specific cell types and states. We anticipate that iGTP will offer insights at both PPI and TP levels and holds promise for predicting responses to novel perturbations.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12206099/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf296\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf296","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

像Variational AutoEncoder这样的深度学习模型使得大规模单细胞转录组的低维细胞嵌入表示成为可能,并在下游任务中显示出极大的灵活性。然而,如果没有设计特定的结构,通常会丢失具有生物学意义的潜在空间。在这里,我们设计了一个新的可解释的生成转录程序(iGTP)框架,可以模拟不同生物状态之间转录程序(TP)空间和蛋白质-蛋白质相互作用(PPI)的重要性。我们展示了iGTP在不同的生物学背景下使用基因本体,规范途径和不同的PPI策展的性能。iGTP不仅阐明了细胞反应的基本真相,而且在功能富集任务中超越了其他深度学习模型和传统生物信息学方法。通过将潜在层与图神经网络框架相结合,iGTP可以有效地推断细胞对扰动的响应。最后,我们将iGTP嵌入与潜在扩散模型应用于精确生成特定细胞类型和状态的细胞嵌入。我们预计iGTP将提供PPI和TP水平的见解,并有望预测对新扰动的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
iGTP: learning interpretable cellular embedding for inferring biological mechanisms underlying single-cell transcriptomics.

Deep-learning models like Variational AutoEncoder have enabled low dimensional cellular embedding representation for large-scale single-cell transcriptomes and shown great flexibility in downstream tasks. However, biologically meaningful latent space is usually missing if no specific structure is designed. Here, we engineered a novel interpretable generative transcriptional program (iGTP) framework that could model the importance of transcriptional program (TP) space and protein-protein interactions (PPI) between different biological states. We demonstrated the performance of iGTP in a diverse biological context using gene ontology, canonical pathway, and different PPI curation. iGTP not only elucidated the ground truth of cellular responses but also surpassed other deep learning models and traditional bioinformatics methods in functional enrichment tasks. By integrating the latent layer with a graph neural network framework, iGTP could effectively infer cellular responses to perturbations. Lastly, we applied iGTP TP embeddings with a latent diffusion model to accurately generate cell embeddings for specific cell types and states. We anticipate that iGTP will offer insights at both PPI and TP levels and holds promise for predicting responses to novel perturbations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信