Kang-Lin Hsieh, Kai Zhang, Yan Chu, Lishan Yu, Xiaoyang Li, Nuo Hu, Isha Kawosa, Patrick G Pilié, Pratip K Bhattacharya, Degui Zhi, Xiaoqian Jiang, Zhongming Zhao, Yulin Dai
{"title":"iGTP:学习可解释的细胞嵌入,以推断单细胞转录组学的生物学机制。","authors":"Kang-Lin Hsieh, Kai Zhang, Yan Chu, Lishan Yu, Xiaoyang Li, Nuo Hu, Isha Kawosa, Patrick G Pilié, Pratip K Bhattacharya, Degui Zhi, Xiaoqian Jiang, Zhongming Zhao, Yulin Dai","doi":"10.1093/bib/bbaf296","DOIUrl":null,"url":null,"abstract":"<p><p>Deep-learning models like Variational AutoEncoder have enabled low dimensional cellular embedding representation for large-scale single-cell transcriptomes and shown great flexibility in downstream tasks. However, biologically meaningful latent space is usually missing if no specific structure is designed. Here, we engineered a novel interpretable generative transcriptional program (iGTP) framework that could model the importance of transcriptional program (TP) space and protein-protein interactions (PPI) between different biological states. We demonstrated the performance of iGTP in a diverse biological context using gene ontology, canonical pathway, and different PPI curation. iGTP not only elucidated the ground truth of cellular responses but also surpassed other deep learning models and traditional bioinformatics methods in functional enrichment tasks. By integrating the latent layer with a graph neural network framework, iGTP could effectively infer cellular responses to perturbations. Lastly, we applied iGTP TP embeddings with a latent diffusion model to accurately generate cell embeddings for specific cell types and states. We anticipate that iGTP will offer insights at both PPI and TP levels and holds promise for predicting responses to novel perturbations.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12206099/pdf/","citationCount":"0","resultStr":"{\"title\":\"iGTP: learning interpretable cellular embedding for inferring biological mechanisms underlying single-cell transcriptomics.\",\"authors\":\"Kang-Lin Hsieh, Kai Zhang, Yan Chu, Lishan Yu, Xiaoyang Li, Nuo Hu, Isha Kawosa, Patrick G Pilié, Pratip K Bhattacharya, Degui Zhi, Xiaoqian Jiang, Zhongming Zhao, Yulin Dai\",\"doi\":\"10.1093/bib/bbaf296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep-learning models like Variational AutoEncoder have enabled low dimensional cellular embedding representation for large-scale single-cell transcriptomes and shown great flexibility in downstream tasks. However, biologically meaningful latent space is usually missing if no specific structure is designed. Here, we engineered a novel interpretable generative transcriptional program (iGTP) framework that could model the importance of transcriptional program (TP) space and protein-protein interactions (PPI) between different biological states. We demonstrated the performance of iGTP in a diverse biological context using gene ontology, canonical pathway, and different PPI curation. iGTP not only elucidated the ground truth of cellular responses but also surpassed other deep learning models and traditional bioinformatics methods in functional enrichment tasks. By integrating the latent layer with a graph neural network framework, iGTP could effectively infer cellular responses to perturbations. Lastly, we applied iGTP TP embeddings with a latent diffusion model to accurately generate cell embeddings for specific cell types and states. We anticipate that iGTP will offer insights at both PPI and TP levels and holds promise for predicting responses to novel perturbations.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12206099/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf296\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf296","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Deep-learning models like Variational AutoEncoder have enabled low dimensional cellular embedding representation for large-scale single-cell transcriptomes and shown great flexibility in downstream tasks. However, biologically meaningful latent space is usually missing if no specific structure is designed. Here, we engineered a novel interpretable generative transcriptional program (iGTP) framework that could model the importance of transcriptional program (TP) space and protein-protein interactions (PPI) between different biological states. We demonstrated the performance of iGTP in a diverse biological context using gene ontology, canonical pathway, and different PPI curation. iGTP not only elucidated the ground truth of cellular responses but also surpassed other deep learning models and traditional bioinformatics methods in functional enrichment tasks. By integrating the latent layer with a graph neural network framework, iGTP could effectively infer cellular responses to perturbations. Lastly, we applied iGTP TP embeddings with a latent diffusion model to accurately generate cell embeddings for specific cell types and states. We anticipate that iGTP will offer insights at both PPI and TP levels and holds promise for predicting responses to novel perturbations.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.