{"title":"多重肌醇多磷酸磷酸酶;在畜牧业中具有潜在生物活性功能的隐藏式植酸消化器的研究进展。","authors":"Jaiesoon Cho","doi":"10.5713/ab.25.0122","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this review was to describe the enzymatic properties of multiple inositol polyphosphate phosphatase (MINPP1/MIPP) as an unusual member of histidine acid phosphatase, distinct from conventional microbial phytases and their additional physiological functions besides degrading phytate. Considering parameters such as pH activity profile, substrate specificity, catalytic efficiency, and stability, MINPP1 is of merit as a novel phytase source for developing an ideal feed additive supported by functional metagenomics fused with recombinant DNA technology and classical protein engineering. In addition, MINPP1 appears to be involved in some biological activities such as cell survival, stress, lipopolysaccharide (LPS) and inorganic polyphosphate-induced inflammatory response, milk fatty acid composition-related metabolism and bone-related growth and pathophysiology, which can be important for the production performance of farm animals. Future directions need profound studies revealing the direct effects of MINPP1 on these physiological events.</p>","PeriodicalId":7825,"journal":{"name":"Animal Bioscience","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple Inositol Polyphosphate Phosphatase ; A Hidden Phytate Digester with Bioactive Function Potential in Animal husbandry - A review.\",\"authors\":\"Jaiesoon Cho\",\"doi\":\"10.5713/ab.25.0122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective of this review was to describe the enzymatic properties of multiple inositol polyphosphate phosphatase (MINPP1/MIPP) as an unusual member of histidine acid phosphatase, distinct from conventional microbial phytases and their additional physiological functions besides degrading phytate. Considering parameters such as pH activity profile, substrate specificity, catalytic efficiency, and stability, MINPP1 is of merit as a novel phytase source for developing an ideal feed additive supported by functional metagenomics fused with recombinant DNA technology and classical protein engineering. In addition, MINPP1 appears to be involved in some biological activities such as cell survival, stress, lipopolysaccharide (LPS) and inorganic polyphosphate-induced inflammatory response, milk fatty acid composition-related metabolism and bone-related growth and pathophysiology, which can be important for the production performance of farm animals. Future directions need profound studies revealing the direct effects of MINPP1 on these physiological events.</p>\",\"PeriodicalId\":7825,\"journal\":{\"name\":\"Animal Bioscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Bioscience\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5713/ab.25.0122\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Bioscience","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5713/ab.25.0122","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Multiple Inositol Polyphosphate Phosphatase ; A Hidden Phytate Digester with Bioactive Function Potential in Animal husbandry - A review.
The objective of this review was to describe the enzymatic properties of multiple inositol polyphosphate phosphatase (MINPP1/MIPP) as an unusual member of histidine acid phosphatase, distinct from conventional microbial phytases and their additional physiological functions besides degrading phytate. Considering parameters such as pH activity profile, substrate specificity, catalytic efficiency, and stability, MINPP1 is of merit as a novel phytase source for developing an ideal feed additive supported by functional metagenomics fused with recombinant DNA technology and classical protein engineering. In addition, MINPP1 appears to be involved in some biological activities such as cell survival, stress, lipopolysaccharide (LPS) and inorganic polyphosphate-induced inflammatory response, milk fatty acid composition-related metabolism and bone-related growth and pathophysiology, which can be important for the production performance of farm animals. Future directions need profound studies revealing the direct effects of MINPP1 on these physiological events.