新型多孔二维半导体碳同素异形体C16的物理化学表征:基于密度泛函理论和基于机器学习的分子动力学研究

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-05-22 DOI:10.1039/d5nr01282a
Kleuton Antunes Lopes Lima, Rodrigo Alves, Elie A. Moujaes, Alexandre Cavalheiro Dias, D. S. Galvao, Marcelo Lopes Pereira Júnior, Luiz Antonio Ribeiro, Jr.
{"title":"新型多孔二维半导体碳同素异形体C16的物理化学表征:基于密度泛函理论和基于机器学习的分子动力学研究","authors":"Kleuton Antunes Lopes Lima, Rodrigo Alves, Elie A. Moujaes, Alexandre Cavalheiro Dias, D. S. Galvao, Marcelo Lopes Pereira Júnior, Luiz Antonio Ribeiro, Jr.","doi":"10.1039/d5nr01282a","DOIUrl":null,"url":null,"abstract":"This study comprehensively characterizes, with suggested applications, a novel two-dimensional carbon allotrope, C<small><sub>16</sub></small>, using Density Functional Theory and machine learning-based molecular dynamics. This nanomaterial is derived from naphthalene and bicyclopropylidene molecules, forming a planar configuration with sp<small><sup>2</sup></small> hybridization and featuring 3-, 4-, 6-, 8-, and 10-membered rings. The cohesive energy of -7.1 eV/atom, the absence of imaginary frequencies in the phonon spectrum, and the retention of the system's topology after ab initio molecular dynamics simulations confirm the structural stability of C$_{16}$. The nanomaterial exhibits a semiconducting behavior with a direct band gap of 0.59 eV and anisotropic optical absorption in the $y$ direction. Assuming a complete absorption of incident light, it registers a power conversion efficiency of 13 %, demonstrating relatively good potential for applications in solar energy conversion. Excluding the vacuum effect along the non-periodic $z$ direction, the planar lattice thermal conductivity $\\kappa_L$ reaches ultralow values of 1.90$\\times$ 10$^{-2}$ W/(m.K), 0.90$\\times$ 10$^{-2}$, and 0.59$\\times$ 10$^{-2}$ for T=300K, 600K, and 1000K, respectively along both x and y directions. Very close to the Fermi level, the thermoelectric figure of merit (zT) can reach a maximum value of 0.93 at room temperatures along both planar directions, indicating an excellent ability to convert a temperature gradient into electrical power. Additionally, C<small><sub>16</sub></small> demonstrates high mechanical strength, with Young's modulus values of 500 GPa and 630 GPa in the x and y directions, respectively. Insights into the electronic, optical, thermoelectric, and mechanical properties of C<small><sub>16</sub></small> reveal its promising capability for energy conversion applications.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"31 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physicochemical Characterization of a New Porous 2D Semiconductor Carbon Allotrope, C16: An Investigation via Density Functional Theory and Machine Learning-based Molecular Dynamics\",\"authors\":\"Kleuton Antunes Lopes Lima, Rodrigo Alves, Elie A. Moujaes, Alexandre Cavalheiro Dias, D. S. Galvao, Marcelo Lopes Pereira Júnior, Luiz Antonio Ribeiro, Jr.\",\"doi\":\"10.1039/d5nr01282a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study comprehensively characterizes, with suggested applications, a novel two-dimensional carbon allotrope, C<small><sub>16</sub></small>, using Density Functional Theory and machine learning-based molecular dynamics. This nanomaterial is derived from naphthalene and bicyclopropylidene molecules, forming a planar configuration with sp<small><sup>2</sup></small> hybridization and featuring 3-, 4-, 6-, 8-, and 10-membered rings. The cohesive energy of -7.1 eV/atom, the absence of imaginary frequencies in the phonon spectrum, and the retention of the system's topology after ab initio molecular dynamics simulations confirm the structural stability of C$_{16}$. The nanomaterial exhibits a semiconducting behavior with a direct band gap of 0.59 eV and anisotropic optical absorption in the $y$ direction. Assuming a complete absorption of incident light, it registers a power conversion efficiency of 13 %, demonstrating relatively good potential for applications in solar energy conversion. Excluding the vacuum effect along the non-periodic $z$ direction, the planar lattice thermal conductivity $\\\\kappa_L$ reaches ultralow values of 1.90$\\\\times$ 10$^{-2}$ W/(m.K), 0.90$\\\\times$ 10$^{-2}$, and 0.59$\\\\times$ 10$^{-2}$ for T=300K, 600K, and 1000K, respectively along both x and y directions. Very close to the Fermi level, the thermoelectric figure of merit (zT) can reach a maximum value of 0.93 at room temperatures along both planar directions, indicating an excellent ability to convert a temperature gradient into electrical power. Additionally, C<small><sub>16</sub></small> demonstrates high mechanical strength, with Young's modulus values of 500 GPa and 630 GPa in the x and y directions, respectively. Insights into the electronic, optical, thermoelectric, and mechanical properties of C<small><sub>16</sub></small> reveal its promising capability for energy conversion applications.\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nr01282a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nr01282a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用密度泛函理论和基于机器学习的分子动力学,全面表征了一种新的二维碳同素异形体C16,并提出了应用建议。该纳米材料由萘和双环丙烯分子衍生而来,形成具有sp2杂化的平面构型,并具有3、4、6、8和10元环。从头算分子动力学模拟表明,C$_{16}$的内聚能为-7.1 eV/原子,声子谱中不存在虚频率,系统拓扑保持不变,证实了C$_{16}$的结构稳定性。该纳米材料具有半导体性质,直接带隙为0.59 eV,在y方向上具有各向异性光吸收。假设入射光完全吸收,其功率转换效率为13%,在太阳能转换方面具有较好的应用潜力。排除沿非周期z方向的真空效应,平面晶格导热系数$\kappa_L$在T=300K、600K和1000K时,沿x和y方向分别达到了1.90$\乘以$ 10$^{-2}$ W/(m.K)、0.90$\乘以$ 10$^{-2}$和0.59$\乘以$ 10$^{-2}$的超低值。热电性能值(zT)非常接近费米能级,在室温下沿两个平面方向均可达到0.93的最大值,表明具有将温度梯度转换为电能的优异能力。此外,C16具有较高的机械强度,x和y方向的杨氏模量分别为500 GPa和630 GPa。对C16的电子、光学、热电和机械性能的深入研究揭示了它在能量转换应用方面的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physicochemical Characterization of a New Porous 2D Semiconductor Carbon Allotrope, C16: An Investigation via Density Functional Theory and Machine Learning-based Molecular Dynamics
This study comprehensively characterizes, with suggested applications, a novel two-dimensional carbon allotrope, C16, using Density Functional Theory and machine learning-based molecular dynamics. This nanomaterial is derived from naphthalene and bicyclopropylidene molecules, forming a planar configuration with sp2 hybridization and featuring 3-, 4-, 6-, 8-, and 10-membered rings. The cohesive energy of -7.1 eV/atom, the absence of imaginary frequencies in the phonon spectrum, and the retention of the system's topology after ab initio molecular dynamics simulations confirm the structural stability of C$_{16}$. The nanomaterial exhibits a semiconducting behavior with a direct band gap of 0.59 eV and anisotropic optical absorption in the $y$ direction. Assuming a complete absorption of incident light, it registers a power conversion efficiency of 13 %, demonstrating relatively good potential for applications in solar energy conversion. Excluding the vacuum effect along the non-periodic $z$ direction, the planar lattice thermal conductivity $\kappa_L$ reaches ultralow values of 1.90$\times$ 10$^{-2}$ W/(m.K), 0.90$\times$ 10$^{-2}$, and 0.59$\times$ 10$^{-2}$ for T=300K, 600K, and 1000K, respectively along both x and y directions. Very close to the Fermi level, the thermoelectric figure of merit (zT) can reach a maximum value of 0.93 at room temperatures along both planar directions, indicating an excellent ability to convert a temperature gradient into electrical power. Additionally, C16 demonstrates high mechanical strength, with Young's modulus values of 500 GPa and 630 GPa in the x and y directions, respectively. Insights into the electronic, optical, thermoelectric, and mechanical properties of C16 reveal its promising capability for energy conversion applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信