Jared Laughlin, Cynthia L Stenger, Hanna J Jefcoat
{"title":"利用计算机预测工具和分子模型评估单胺氧化酶A错义L32S对单胺氧化酶A功能的潜在影响。","authors":"Jared Laughlin, Cynthia L Stenger, Hanna J Jefcoat","doi":"10.17912/micropub.biology.001414","DOIUrl":null,"url":null,"abstract":"<p><p>Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that affects 6-7% of people worldwide (Wilcutt, 2012). MAOA is a gene that encodes monoamine oxidase A, an enzyme responsible for the regulation and metabolism of monoamines thought to be associated with ADHD. This study investigates a leucine to serine swap at amino acid position 32 in FAD-binding domain of the enzyme monoamine oxidase A. Results from <i>in silico</i> prediction tools and molecular dynamics modeling provide evidence to support pathogenicity of the L32S missense variant of monoamine oxidase A.</p>","PeriodicalId":74192,"journal":{"name":"microPublication biology","volume":"2025 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12022798/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating potential impact of monoamine oxidase A missense L32S on the function of the enzyme monoamine oxidase A using <i>in silico</i> prediction tools and molecular modeling.\",\"authors\":\"Jared Laughlin, Cynthia L Stenger, Hanna J Jefcoat\",\"doi\":\"10.17912/micropub.biology.001414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that affects 6-7% of people worldwide (Wilcutt, 2012). MAOA is a gene that encodes monoamine oxidase A, an enzyme responsible for the regulation and metabolism of monoamines thought to be associated with ADHD. This study investigates a leucine to serine swap at amino acid position 32 in FAD-binding domain of the enzyme monoamine oxidase A. Results from <i>in silico</i> prediction tools and molecular dynamics modeling provide evidence to support pathogenicity of the L32S missense variant of monoamine oxidase A.</p>\",\"PeriodicalId\":74192,\"journal\":{\"name\":\"microPublication biology\",\"volume\":\"2025 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12022798/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"microPublication biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17912/micropub.biology.001414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"microPublication biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17912/micropub.biology.001414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluating potential impact of monoamine oxidase A missense L32S on the function of the enzyme monoamine oxidase A using in silico prediction tools and molecular modeling.
Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that affects 6-7% of people worldwide (Wilcutt, 2012). MAOA is a gene that encodes monoamine oxidase A, an enzyme responsible for the regulation and metabolism of monoamines thought to be associated with ADHD. This study investigates a leucine to serine swap at amino acid position 32 in FAD-binding domain of the enzyme monoamine oxidase A. Results from in silico prediction tools and molecular dynamics modeling provide evidence to support pathogenicity of the L32S missense variant of monoamine oxidase A.