纳米Fe3O4促进丙酸驯化体系的甲烷生成

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Fangzhou Wang , Ge Song , Mou Zhang , Shunan Zhao , Tuo Wang , Kai Zhao , Xin Wang , Ruiping Liu
{"title":"纳米Fe3O4促进丙酸驯化体系的甲烷生成","authors":"Fangzhou Wang ,&nbsp;Ge Song ,&nbsp;Mou Zhang ,&nbsp;Shunan Zhao ,&nbsp;Tuo Wang ,&nbsp;Kai Zhao ,&nbsp;Xin Wang ,&nbsp;Ruiping Liu","doi":"10.1016/j.biortech.2025.132608","DOIUrl":null,"url":null,"abstract":"<div><div>Propionate accumulation is common in anaerobic digestion systems, while Fe<sub>3</sub>O<sub>4</sub> nanoparticles (Fe<sub>3</sub>O<sub>4</sub> NPs) show potential in steering direct interspecies electron transfer (DIET) to facilitate methanogenesis from propionate. However, the effect of Fe<sub>3</sub>O<sub>4</sub> NPs in stable microbial communities remains unclear. This study demonstrated that 1.0 g/L Fe<sub>3</sub>O<sub>4</sub> NPs enhanced propionate degradation and methane production by 220 % and 55 % of the propionate-acclimated microbial consortia post-shock loading, as evidenced by batch-test. High propionate concentrations suppressed <em>Geobacter</em>, yet Fe<sub>3</sub>O<sub>4</sub> NPs enabled electron syntrophy between alternative DIET-participants (<em>Arcobacter</em>, <em>Syntrophobacter</em>) and methanogens (<em>Methanothrix</em>, <em>Methanobacterium</em>) serving as electron conduits. Network analysis further revealed that Fe<sub>3</sub>O<sub>4</sub> NPs activated interactions among potential electroactive microbes, highlighting the potentially ubiquitous presence of electron syntrophy. Even in propionate-stressed microbial communities, such mutualism may be rapidly activated by Fe<sub>3</sub>O<sub>4</sub> NPs, offering a practical solution for mitigating propionate accumulation and enhance digester performance.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"431 ","pages":"Article 132608"},"PeriodicalIF":9.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fe3O4 nanoparticles promote methanogenesis in propionate acclimated system\",\"authors\":\"Fangzhou Wang ,&nbsp;Ge Song ,&nbsp;Mou Zhang ,&nbsp;Shunan Zhao ,&nbsp;Tuo Wang ,&nbsp;Kai Zhao ,&nbsp;Xin Wang ,&nbsp;Ruiping Liu\",\"doi\":\"10.1016/j.biortech.2025.132608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Propionate accumulation is common in anaerobic digestion systems, while Fe<sub>3</sub>O<sub>4</sub> nanoparticles (Fe<sub>3</sub>O<sub>4</sub> NPs) show potential in steering direct interspecies electron transfer (DIET) to facilitate methanogenesis from propionate. However, the effect of Fe<sub>3</sub>O<sub>4</sub> NPs in stable microbial communities remains unclear. This study demonstrated that 1.0 g/L Fe<sub>3</sub>O<sub>4</sub> NPs enhanced propionate degradation and methane production by 220 % and 55 % of the propionate-acclimated microbial consortia post-shock loading, as evidenced by batch-test. High propionate concentrations suppressed <em>Geobacter</em>, yet Fe<sub>3</sub>O<sub>4</sub> NPs enabled electron syntrophy between alternative DIET-participants (<em>Arcobacter</em>, <em>Syntrophobacter</em>) and methanogens (<em>Methanothrix</em>, <em>Methanobacterium</em>) serving as electron conduits. Network analysis further revealed that Fe<sub>3</sub>O<sub>4</sub> NPs activated interactions among potential electroactive microbes, highlighting the potentially ubiquitous presence of electron syntrophy. Even in propionate-stressed microbial communities, such mutualism may be rapidly activated by Fe<sub>3</sub>O<sub>4</sub> NPs, offering a practical solution for mitigating propionate accumulation and enhance digester performance.</div></div>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\"431 \",\"pages\":\"Article 132608\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960852425005747\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425005747","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

丙酸积累在厌氧消化系统中很常见,而Fe3O4纳米颗粒(Fe3O4 NPs)显示出指导直接种间电子转移(DIET)以促进丙酸产甲烷的潜力。然而,Fe3O4 NPs对稳定微生物群落的影响尚不清楚。本研究通过批量试验证明,1.0 g/L Fe3O4 NPs可使冲击负荷后丙酸降解和甲烷产量分别提高220%和55%的丙酸驯化微生物群落。高浓度的丙酸抑制了Geobacter,但Fe3O4 NPs使替代饮食参与者(Arcobacter, Syntrophobacter)和甲烷菌(Methanothrix, Methanobacterium)之间的电子协同作用成为电子通道。网络分析进一步揭示,Fe3O4 NPs激活了潜在电活性微生物之间的相互作用,突出了潜在普遍存在的电子合胞作用。即使在丙酸胁迫下的微生物群落中,Fe3O4 NPs也可以快速激活这种相互作用,为减轻丙酸积累和提高沼池性能提供了一种实用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fe3O4 nanoparticles promote methanogenesis in propionate acclimated system

Fe3O4 nanoparticles promote methanogenesis in propionate acclimated system
Propionate accumulation is common in anaerobic digestion systems, while Fe3O4 nanoparticles (Fe3O4 NPs) show potential in steering direct interspecies electron transfer (DIET) to facilitate methanogenesis from propionate. However, the effect of Fe3O4 NPs in stable microbial communities remains unclear. This study demonstrated that 1.0 g/L Fe3O4 NPs enhanced propionate degradation and methane production by 220 % and 55 % of the propionate-acclimated microbial consortia post-shock loading, as evidenced by batch-test. High propionate concentrations suppressed Geobacter, yet Fe3O4 NPs enabled electron syntrophy between alternative DIET-participants (Arcobacter, Syntrophobacter) and methanogens (Methanothrix, Methanobacterium) serving as electron conduits. Network analysis further revealed that Fe3O4 NPs activated interactions among potential electroactive microbes, highlighting the potentially ubiquitous presence of electron syntrophy. Even in propionate-stressed microbial communities, such mutualism may be rapidly activated by Fe3O4 NPs, offering a practical solution for mitigating propionate accumulation and enhance digester performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信