Joshua Zhi En Tan, JunJie Wee*, Xue Gong* and Kelin Xia*,
{"title":"用于抗癌肽预测的拓扑增强机器学习模型(Top-ML)","authors":"Joshua Zhi En Tan, JunJie Wee*, Xue Gong* and Kelin Xia*, ","doi":"10.1021/acs.jcim.5c0047610.1021/acs.jcim.5c00476","DOIUrl":null,"url":null,"abstract":"<p >Recently, therapeutic peptides have demonstrated great promise for cancer treatment. To explore powerful anticancer peptides, artificial intelligence (AI)-based approaches have been developed to systematically screen potential candidates. However, the lack of efficient featurization of peptides has become a bottleneck for these machine-learning models. In this paper, we propose a topology-enhanced machine learning model (Top-ML) for anticancer peptide prediction. Our Top-ML employs peptide topological features derived from its sequence “connection” information characterized by spectral descriptors. Our Top-ML model, employing an Extra-Trees classifier, has been validated on the AntiCP 2.0 and mACPpred 2.0 benchmark data sets, achieving state-of-the-art performance or results comparable to existing deep learning models, while providing greater interpretability. Our results highlight the potential of leveraging novel topology-based featurization to accelerate the identification of anticancer peptides.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 8","pages":"4232–4242 4232–4242"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topology-Enhanced Machine Learning Model (Top-ML) for Anticancer Peptide Prediction\",\"authors\":\"Joshua Zhi En Tan, JunJie Wee*, Xue Gong* and Kelin Xia*, \",\"doi\":\"10.1021/acs.jcim.5c0047610.1021/acs.jcim.5c00476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Recently, therapeutic peptides have demonstrated great promise for cancer treatment. To explore powerful anticancer peptides, artificial intelligence (AI)-based approaches have been developed to systematically screen potential candidates. However, the lack of efficient featurization of peptides has become a bottleneck for these machine-learning models. In this paper, we propose a topology-enhanced machine learning model (Top-ML) for anticancer peptide prediction. Our Top-ML employs peptide topological features derived from its sequence “connection” information characterized by spectral descriptors. Our Top-ML model, employing an Extra-Trees classifier, has been validated on the AntiCP 2.0 and mACPpred 2.0 benchmark data sets, achieving state-of-the-art performance or results comparable to existing deep learning models, while providing greater interpretability. Our results highlight the potential of leveraging novel topology-based featurization to accelerate the identification of anticancer peptides.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"65 8\",\"pages\":\"4232–4242 4232–4242\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.5c00476\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.5c00476","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Topology-Enhanced Machine Learning Model (Top-ML) for Anticancer Peptide Prediction
Recently, therapeutic peptides have demonstrated great promise for cancer treatment. To explore powerful anticancer peptides, artificial intelligence (AI)-based approaches have been developed to systematically screen potential candidates. However, the lack of efficient featurization of peptides has become a bottleneck for these machine-learning models. In this paper, we propose a topology-enhanced machine learning model (Top-ML) for anticancer peptide prediction. Our Top-ML employs peptide topological features derived from its sequence “connection” information characterized by spectral descriptors. Our Top-ML model, employing an Extra-Trees classifier, has been validated on the AntiCP 2.0 and mACPpred 2.0 benchmark data sets, achieving state-of-the-art performance or results comparable to existing deep learning models, while providing greater interpretability. Our results highlight the potential of leveraging novel topology-based featurization to accelerate the identification of anticancer peptides.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.