{"title":"U(1)X模型中的有味共振轻生","authors":"Garv Chauhan","doi":"10.1016/j.nuclphysb.2025.116908","DOIUrl":null,"url":null,"abstract":"<div><div>We study the generation of baryon asymmetry through the flavored resonant leptogenesis in the <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>X</mi></mrow></msub></math></span> extension of the Standard Model. Being a generalization of the <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>B</mi><mtext>-</mtext><mi>L</mi></mrow></msub></math></span>, <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>X</mi></mrow></msub></math></span> is an ultraviolet-complete model of the right-handed neutrinos (RHNs), whose CP violating out-of-equilibrium decays lead to the generation of baryon asymmetry via leptogenesis. We can also explain the neutrino masses via the seesaw mechanism in this model. We consider three different cases for different <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>X</mi></mrow></msub></math></span> charges of the scalar particle responsible for <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>X</mi></mrow></msub></math></span> breaking at TeV-scale. These include the popular <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>B</mi><mtext>-</mtext><mi>L</mi></mrow></msub></math></span> and <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>R</mi></mrow></msub></math></span> models, as well as a <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>C</mi></mrow></msub></math></span> model which maximizes the collider signal. We numerically solve the flavored Boltzmann transport equations to calculate the total baryon asymmetry. We show that all three cases considered here can naturally explain the observed baryon asymmetry of the Universe in a large portion of the available parameter space, while satisfying the neutrino oscillation data. We find that the <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>C</mi></mrow></msub></math></span> case offers successful leptogenesis in a larger portion of the parameter space as compared to <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>B</mi><mtext>-</mtext><mi>L</mi></mrow></msub></math></span> and <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>R</mi></mrow></msub></math></span>. We also perform a comparative study between the flavored and unflavored leptogenesis parameter space. Finally, we also study the collider prospects for all these scenarios using the lepton number violating signal of <span><math><mi>p</mi><mi>p</mi><mo>→</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>±</mo></mrow></msup><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>±</mo></mrow></msup><mo>+</mo></math></span>jets mediated by the <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> boson associated with <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>X</mi></mrow></msub></math></span>. We find that HL-LHC may be able to probe a small portion of the relevant parameter space having successful leptogenesis, if neutrinos have normal mass ordering, while a <span><math><msqrt><mrow><mi>s</mi></mrow></msqrt><mo>=</mo><mn>100</mn></math></span> TeV future collider can access a much larger region of the parameter space, thereby offering an opportunity to test resonant leptogenesis in the <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>X</mi></mrow></msub></math></span> model.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1015 ","pages":"Article 116908"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flavored resonant leptogenesis in the U(1)X model\",\"authors\":\"Garv Chauhan\",\"doi\":\"10.1016/j.nuclphysb.2025.116908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the generation of baryon asymmetry through the flavored resonant leptogenesis in the <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>X</mi></mrow></msub></math></span> extension of the Standard Model. Being a generalization of the <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>B</mi><mtext>-</mtext><mi>L</mi></mrow></msub></math></span>, <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>X</mi></mrow></msub></math></span> is an ultraviolet-complete model of the right-handed neutrinos (RHNs), whose CP violating out-of-equilibrium decays lead to the generation of baryon asymmetry via leptogenesis. We can also explain the neutrino masses via the seesaw mechanism in this model. We consider three different cases for different <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>X</mi></mrow></msub></math></span> charges of the scalar particle responsible for <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>X</mi></mrow></msub></math></span> breaking at TeV-scale. These include the popular <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>B</mi><mtext>-</mtext><mi>L</mi></mrow></msub></math></span> and <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>R</mi></mrow></msub></math></span> models, as well as a <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>C</mi></mrow></msub></math></span> model which maximizes the collider signal. We numerically solve the flavored Boltzmann transport equations to calculate the total baryon asymmetry. We show that all three cases considered here can naturally explain the observed baryon asymmetry of the Universe in a large portion of the available parameter space, while satisfying the neutrino oscillation data. We find that the <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>C</mi></mrow></msub></math></span> case offers successful leptogenesis in a larger portion of the parameter space as compared to <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>B</mi><mtext>-</mtext><mi>L</mi></mrow></msub></math></span> and <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>R</mi></mrow></msub></math></span>. We also perform a comparative study between the flavored and unflavored leptogenesis parameter space. Finally, we also study the collider prospects for all these scenarios using the lepton number violating signal of <span><math><mi>p</mi><mi>p</mi><mo>→</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>±</mo></mrow></msup><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>±</mo></mrow></msup><mo>+</mo></math></span>jets mediated by the <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> boson associated with <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>X</mi></mrow></msub></math></span>. We find that HL-LHC may be able to probe a small portion of the relevant parameter space having successful leptogenesis, if neutrinos have normal mass ordering, while a <span><math><msqrt><mrow><mi>s</mi></mrow></msqrt><mo>=</mo><mn>100</mn></math></span> TeV future collider can access a much larger region of the parameter space, thereby offering an opportunity to test resonant leptogenesis in the <span><math><mi>U</mi><msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>X</mi></mrow></msub></math></span> model.</div></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":\"1015 \",\"pages\":\"Article 116908\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0550321325001178\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325001178","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
We study the generation of baryon asymmetry through the flavored resonant leptogenesis in the extension of the Standard Model. Being a generalization of the , is an ultraviolet-complete model of the right-handed neutrinos (RHNs), whose CP violating out-of-equilibrium decays lead to the generation of baryon asymmetry via leptogenesis. We can also explain the neutrino masses via the seesaw mechanism in this model. We consider three different cases for different charges of the scalar particle responsible for breaking at TeV-scale. These include the popular and models, as well as a model which maximizes the collider signal. We numerically solve the flavored Boltzmann transport equations to calculate the total baryon asymmetry. We show that all three cases considered here can naturally explain the observed baryon asymmetry of the Universe in a large portion of the available parameter space, while satisfying the neutrino oscillation data. We find that the case offers successful leptogenesis in a larger portion of the parameter space as compared to and . We also perform a comparative study between the flavored and unflavored leptogenesis parameter space. Finally, we also study the collider prospects for all these scenarios using the lepton number violating signal of jets mediated by the boson associated with . We find that HL-LHC may be able to probe a small portion of the relevant parameter space having successful leptogenesis, if neutrinos have normal mass ordering, while a TeV future collider can access a much larger region of the parameter space, thereby offering an opportunity to test resonant leptogenesis in the model.
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.