Erendira Villalobos-Sánchez, José Martín Márquez-Villa, Ana Daniela Vega-Rodríguez, David Alejandro Curiel-Pedraza, Alejandro A Canales-Aguirre, Jorge Bravo-Madrigal, Juan Carlos Mateos-Díaz, Darwin E Elizondo-Quiroga
{"title":"以石胆酸为预防抗病毒药物的石胆酸油酸制剂的合成及其配方:体外和体内抗HSV-1病毒感染模型的实验研究","authors":"Erendira Villalobos-Sánchez, José Martín Márquez-Villa, Ana Daniela Vega-Rodríguez, David Alejandro Curiel-Pedraza, Alejandro A Canales-Aguirre, Jorge Bravo-Madrigal, Juan Carlos Mateos-Díaz, Darwin E Elizondo-Quiroga","doi":"10.3390/v17030416","DOIUrl":null,"url":null,"abstract":"<p><p>The discovery and design of antiviral agents have gained unprecedented significance due to the emergence of global health threats. The use of synthetic chemistry has enabled the modification of existing molecules and the creation of entirely novel compounds. In our laboratory, we have enzymatically synthesized a novel bioconjugate, lithocholic acid oleate (LO), derived from lithocholic acid (LCA), a bile acid that has been proven by researchers to exhibit antiviral activity in vitro. The study presented herein describes the preparative synthesis, formulation, and evaluation of LO both in vitro and in vivo for its antiviral activity against human herpes simplex virus 1 (HSV-1) as a model of viral infection. Evaluation of cytotoxicity using A549 cells indicated that a combination of LO (400 μM) and LCA (30 μM) exhibited a favorable safety profile while effectively inhibiting HSV-1 infection comparable to acyclovir treatment. Furthermore, in the in vivo assay, animals treated with an oily formulation containing 7% LO; 0.50% LCA; and 3% oleic acid (OA), 48 h prior to virus exposure, showed results even superior to a 5% acyclovir commercial formulation in terms of scar formation and wound recovery. These promising results enable the development of new preventive products against HSV-1 and probably other viruses.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"17 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946466/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lithocholic Acid Oleate Preparative Synthesis and Its Formulation with Lithocholic Acid as a Preventive Antiviral: In Vitro and In Vivo Assays Against HSV-1 as a Viral Infection Model.\",\"authors\":\"Erendira Villalobos-Sánchez, José Martín Márquez-Villa, Ana Daniela Vega-Rodríguez, David Alejandro Curiel-Pedraza, Alejandro A Canales-Aguirre, Jorge Bravo-Madrigal, Juan Carlos Mateos-Díaz, Darwin E Elizondo-Quiroga\",\"doi\":\"10.3390/v17030416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The discovery and design of antiviral agents have gained unprecedented significance due to the emergence of global health threats. The use of synthetic chemistry has enabled the modification of existing molecules and the creation of entirely novel compounds. In our laboratory, we have enzymatically synthesized a novel bioconjugate, lithocholic acid oleate (LO), derived from lithocholic acid (LCA), a bile acid that has been proven by researchers to exhibit antiviral activity in vitro. The study presented herein describes the preparative synthesis, formulation, and evaluation of LO both in vitro and in vivo for its antiviral activity against human herpes simplex virus 1 (HSV-1) as a model of viral infection. Evaluation of cytotoxicity using A549 cells indicated that a combination of LO (400 μM) and LCA (30 μM) exhibited a favorable safety profile while effectively inhibiting HSV-1 infection comparable to acyclovir treatment. Furthermore, in the in vivo assay, animals treated with an oily formulation containing 7% LO; 0.50% LCA; and 3% oleic acid (OA), 48 h prior to virus exposure, showed results even superior to a 5% acyclovir commercial formulation in terms of scar formation and wound recovery. These promising results enable the development of new preventive products against HSV-1 and probably other viruses.</p>\",\"PeriodicalId\":49328,\"journal\":{\"name\":\"Viruses-Basel\",\"volume\":\"17 3\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946466/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Viruses-Basel\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/v17030416\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v17030416","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
Lithocholic Acid Oleate Preparative Synthesis and Its Formulation with Lithocholic Acid as a Preventive Antiviral: In Vitro and In Vivo Assays Against HSV-1 as a Viral Infection Model.
The discovery and design of antiviral agents have gained unprecedented significance due to the emergence of global health threats. The use of synthetic chemistry has enabled the modification of existing molecules and the creation of entirely novel compounds. In our laboratory, we have enzymatically synthesized a novel bioconjugate, lithocholic acid oleate (LO), derived from lithocholic acid (LCA), a bile acid that has been proven by researchers to exhibit antiviral activity in vitro. The study presented herein describes the preparative synthesis, formulation, and evaluation of LO both in vitro and in vivo for its antiviral activity against human herpes simplex virus 1 (HSV-1) as a model of viral infection. Evaluation of cytotoxicity using A549 cells indicated that a combination of LO (400 μM) and LCA (30 μM) exhibited a favorable safety profile while effectively inhibiting HSV-1 infection comparable to acyclovir treatment. Furthermore, in the in vivo assay, animals treated with an oily formulation containing 7% LO; 0.50% LCA; and 3% oleic acid (OA), 48 h prior to virus exposure, showed results even superior to a 5% acyclovir commercial formulation in terms of scar formation and wound recovery. These promising results enable the development of new preventive products against HSV-1 and probably other viruses.
期刊介绍:
Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.