锆酸钆单晶各向异性断裂:微观力学测试与模型

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yang Liu , Geetha Balakrishnan , Monica Ciomaga Hatnean , Ping Xiao , Ying Chen
{"title":"锆酸钆单晶各向异性断裂:微观力学测试与模型","authors":"Yang Liu ,&nbsp;Geetha Balakrishnan ,&nbsp;Monica Ciomaga Hatnean ,&nbsp;Ping Xiao ,&nbsp;Ying Chen","doi":"10.1016/j.actamat.2025.120944","DOIUrl":null,"url":null,"abstract":"<div><div>We report a study on anisotropic fracture in gadolinium zirconate (GZO) using a combination of micromechanical testing and modelling. A GZO single crystal was grown using the floating zone method, and its fracture toughness in 8 different orientations was measured through the microcantilever beam bending tests. The fracture toughness, <span><math><msub><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow></msub></math></span>, of the GZO single crystal depends on its crystal orientation and follows this ranking order:<span><math><mrow><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>7</mn><mspace></mspace><mover><mn>7</mn><mo>¯</mo></mover><mspace></mspace><mn>3</mn></mrow><mo>)</mo></mrow></msubsup><mo>&gt;</mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>1</mn><mspace></mspace><mover><mn>1</mn><mo>¯</mo></mover><mspace></mspace><mn>5</mn></mrow><mo>)</mo></mrow></msubsup><mo>&gt;</mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>1</mn><mspace></mspace><mover><mn>1</mn><mo>¯</mo></mover><mspace></mspace><mn>1</mn></mrow><mo>)</mo></mrow></msubsup><mo>&gt;</mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>1</mn><mspace></mspace><mover><mn>1</mn><mo>¯</mo></mover><mspace></mspace><mn>2</mn></mrow><mo>)</mo></mrow></msubsup><mo>&gt;</mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>3</mn><mspace></mspace><mover><mn>3</mn><mo>¯</mo></mover><mspace></mspace><mn>1</mn></mrow><mo>)</mo></mrow></msubsup><mo>&gt;</mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>0</mn><mspace></mspace><mn>0</mn><mspace></mspace><mn>1</mn></mrow><mo>)</mo></mrow></msubsup><mo>&gt;</mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>1</mn><mspace></mspace><mover><mn>1</mn><mo>¯</mo></mover><mspace></mspace><mn>3</mn></mrow><mo>)</mo></mrow></msubsup><mo>&gt;</mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>1</mn><mspace></mspace><mover><mn>1</mn><mo>¯</mo></mover><mspace></mspace><mn>0</mn></mrow><mo>)</mo><mspace></mspace></mrow></msubsup></mrow></math></span>. Fractographic analysis reveals that the crystal planes with low fracture toughness (e.g., <span><math><mrow><mo>(</mo><mrow><mn>0</mn><mspace></mspace><mn>0</mn><mspace></mspace><mn>1</mn></mrow><mo>)</mo></mrow></math></span>) exhibit atomically smooth fracture surfaces. In contrast, planes with higher fracture toughness (e.g., <span><math><mrow><mo>(</mo><mrow><mn>1</mn><mspace></mspace><mover><mn>1</mn><mo>¯</mo></mover><mspace></mspace><mn>5</mn></mrow><mo>)</mo></mrow></math></span>) show distinct cleavages and zig-zag crack paths at the atomic scale, with crack deflection toward orientations with lower resistance to cracking. The cleavages and crack deflection increase the fracture surface area, which enables more energy dissipation during the fracture process and leads to higher fracture toughness. Surface energy of crystal planes determined by first-principles calculations is broadly consistent in ranking with the fracture toughness measured by experiments, which further confirm the anisotropic nature in fracture of the GZO single crystal. Finally, we calculate the broken bond energy density in different crystal planes during fracture and identify its strong correlation with fracture toughness.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"289 ","pages":"Article 120944"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic fracture in gadolinium zirconate single crystal: Micromechanical testing and modelling\",\"authors\":\"Yang Liu ,&nbsp;Geetha Balakrishnan ,&nbsp;Monica Ciomaga Hatnean ,&nbsp;Ping Xiao ,&nbsp;Ying Chen\",\"doi\":\"10.1016/j.actamat.2025.120944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We report a study on anisotropic fracture in gadolinium zirconate (GZO) using a combination of micromechanical testing and modelling. A GZO single crystal was grown using the floating zone method, and its fracture toughness in 8 different orientations was measured through the microcantilever beam bending tests. The fracture toughness, <span><math><msub><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow></msub></math></span>, of the GZO single crystal depends on its crystal orientation and follows this ranking order:<span><math><mrow><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>7</mn><mspace></mspace><mover><mn>7</mn><mo>¯</mo></mover><mspace></mspace><mn>3</mn></mrow><mo>)</mo></mrow></msubsup><mo>&gt;</mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>1</mn><mspace></mspace><mover><mn>1</mn><mo>¯</mo></mover><mspace></mspace><mn>5</mn></mrow><mo>)</mo></mrow></msubsup><mo>&gt;</mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>1</mn><mspace></mspace><mover><mn>1</mn><mo>¯</mo></mover><mspace></mspace><mn>1</mn></mrow><mo>)</mo></mrow></msubsup><mo>&gt;</mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>1</mn><mspace></mspace><mover><mn>1</mn><mo>¯</mo></mover><mspace></mspace><mn>2</mn></mrow><mo>)</mo></mrow></msubsup><mo>&gt;</mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>3</mn><mspace></mspace><mover><mn>3</mn><mo>¯</mo></mover><mspace></mspace><mn>1</mn></mrow><mo>)</mo></mrow></msubsup><mo>&gt;</mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>0</mn><mspace></mspace><mn>0</mn><mspace></mspace><mn>1</mn></mrow><mo>)</mo></mrow></msubsup><mo>&gt;</mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>1</mn><mspace></mspace><mover><mn>1</mn><mo>¯</mo></mover><mspace></mspace><mn>3</mn></mrow><mo>)</mo></mrow></msubsup><mo>&gt;</mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>1</mn><mspace></mspace><mover><mn>1</mn><mo>¯</mo></mover><mspace></mspace><mn>0</mn></mrow><mo>)</mo><mspace></mspace></mrow></msubsup></mrow></math></span>. Fractographic analysis reveals that the crystal planes with low fracture toughness (e.g., <span><math><mrow><mo>(</mo><mrow><mn>0</mn><mspace></mspace><mn>0</mn><mspace></mspace><mn>1</mn></mrow><mo>)</mo></mrow></math></span>) exhibit atomically smooth fracture surfaces. In contrast, planes with higher fracture toughness (e.g., <span><math><mrow><mo>(</mo><mrow><mn>1</mn><mspace></mspace><mover><mn>1</mn><mo>¯</mo></mover><mspace></mspace><mn>5</mn></mrow><mo>)</mo></mrow></math></span>) show distinct cleavages and zig-zag crack paths at the atomic scale, with crack deflection toward orientations with lower resistance to cracking. The cleavages and crack deflection increase the fracture surface area, which enables more energy dissipation during the fracture process and leads to higher fracture toughness. Surface energy of crystal planes determined by first-principles calculations is broadly consistent in ranking with the fracture toughness measured by experiments, which further confirm the anisotropic nature in fracture of the GZO single crystal. Finally, we calculate the broken bond energy density in different crystal planes during fracture and identify its strong correlation with fracture toughness.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"289 \",\"pages\":\"Article 120944\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645425002368\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425002368","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们报道了一项结合微观力学测试和模型的锆酸钆(GZO)各向异性断裂研究。采用悬浮区法生长GZO单晶,通过微悬臂梁弯曲试验测量了其8个不同取向的断裂韧性。GZO单晶的断裂韧性KICKIC取决于其晶体取向,其排列顺序为:KIC(77¯3)>;KIC(11¯5)>;KIC(11¯1)>;KIC(11¯2)>;KIC(33¯1)>;KIC(001)>;KIC(11¯3)>;KIC(11¯0)KIC(77¯3)>;KIC(11¯2)>;KIC(33¯1)>;KIC(001)>;KIC(11¯3)>;KIC(33¯1)>;KIC(001)>;KIC(11¯3)>;KIC(33¯1)>;KIC(001)>;KIC(11¯3)>;KIC(11¯0)。断口分析表明,具有低断裂韧性的晶面(如(001)(001))表现出原子光滑的断口表面。相比之下,断裂韧性较高的平面(如(11¯5)(11¯5))在原子尺度上表现出明显的解理和锯齿状裂纹路径,裂纹向抗裂性较低的方向偏转。解理和裂纹偏转增加了断裂表面积,使断裂过程中的能量耗散更大,从而提高了断裂韧性。第一性原理计算得到的晶面表面能与实验测得的断裂韧性排序基本一致,进一步证实了GZO单晶断裂的各向异性。最后,计算了断裂过程中不同晶面的断裂键能密度,发现其与断裂韧性有较强的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Anisotropic fracture in gadolinium zirconate single crystal: Micromechanical testing and modelling

Anisotropic fracture in gadolinium zirconate single crystal: Micromechanical testing and modelling

Anisotropic fracture in gadolinium zirconate single crystal: Micromechanical testing and modelling
We report a study on anisotropic fracture in gadolinium zirconate (GZO) using a combination of micromechanical testing and modelling. A GZO single crystal was grown using the floating zone method, and its fracture toughness in 8 different orientations was measured through the microcantilever beam bending tests. The fracture toughness, KIC, of the GZO single crystal depends on its crystal orientation and follows this ranking order:KIC(77¯3)>KIC(11¯5)>KIC(11¯1)>KIC(11¯2)>KIC(33¯1)>KIC(001)>KIC(11¯3)>KIC(11¯0). Fractographic analysis reveals that the crystal planes with low fracture toughness (e.g., (001)) exhibit atomically smooth fracture surfaces. In contrast, planes with higher fracture toughness (e.g., (11¯5)) show distinct cleavages and zig-zag crack paths at the atomic scale, with crack deflection toward orientations with lower resistance to cracking. The cleavages and crack deflection increase the fracture surface area, which enables more energy dissipation during the fracture process and leads to higher fracture toughness. Surface energy of crystal planes determined by first-principles calculations is broadly consistent in ranking with the fracture toughness measured by experiments, which further confirm the anisotropic nature in fracture of the GZO single crystal. Finally, we calculate the broken bond energy density in different crystal planes during fracture and identify its strong correlation with fracture toughness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信