Yang Liu , Geetha Balakrishnan , Monica Ciomaga Hatnean , Ping Xiao , Ying Chen
{"title":"锆酸钆单晶各向异性断裂:微观力学测试与模型","authors":"Yang Liu , Geetha Balakrishnan , Monica Ciomaga Hatnean , Ping Xiao , Ying Chen","doi":"10.1016/j.actamat.2025.120944","DOIUrl":null,"url":null,"abstract":"<div><div>We report a study on anisotropic fracture in gadolinium zirconate (GZO) using a combination of micromechanical testing and modelling. A GZO single crystal was grown using the floating zone method, and its fracture toughness in 8 different orientations was measured through the microcantilever beam bending tests. The fracture toughness, <span><math><msub><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow></msub></math></span>, of the GZO single crystal depends on its crystal orientation and follows this ranking order:<span><math><mrow><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>7</mn><mspace></mspace><mover><mn>7</mn><mo>¯</mo></mover><mspace></mspace><mn>3</mn></mrow><mo>)</mo></mrow></msubsup><mo>></mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>1</mn><mspace></mspace><mover><mn>1</mn><mo>¯</mo></mover><mspace></mspace><mn>5</mn></mrow><mo>)</mo></mrow></msubsup><mo>></mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>1</mn><mspace></mspace><mover><mn>1</mn><mo>¯</mo></mover><mspace></mspace><mn>1</mn></mrow><mo>)</mo></mrow></msubsup><mo>></mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>1</mn><mspace></mspace><mover><mn>1</mn><mo>¯</mo></mover><mspace></mspace><mn>2</mn></mrow><mo>)</mo></mrow></msubsup><mo>></mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>3</mn><mspace></mspace><mover><mn>3</mn><mo>¯</mo></mover><mspace></mspace><mn>1</mn></mrow><mo>)</mo></mrow></msubsup><mo>></mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>0</mn><mspace></mspace><mn>0</mn><mspace></mspace><mn>1</mn></mrow><mo>)</mo></mrow></msubsup><mo>></mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>1</mn><mspace></mspace><mover><mn>1</mn><mo>¯</mo></mover><mspace></mspace><mn>3</mn></mrow><mo>)</mo></mrow></msubsup><mo>></mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>1</mn><mspace></mspace><mover><mn>1</mn><mo>¯</mo></mover><mspace></mspace><mn>0</mn></mrow><mo>)</mo><mspace></mspace></mrow></msubsup></mrow></math></span>. Fractographic analysis reveals that the crystal planes with low fracture toughness (e.g., <span><math><mrow><mo>(</mo><mrow><mn>0</mn><mspace></mspace><mn>0</mn><mspace></mspace><mn>1</mn></mrow><mo>)</mo></mrow></math></span>) exhibit atomically smooth fracture surfaces. In contrast, planes with higher fracture toughness (e.g., <span><math><mrow><mo>(</mo><mrow><mn>1</mn><mspace></mspace><mover><mn>1</mn><mo>¯</mo></mover><mspace></mspace><mn>5</mn></mrow><mo>)</mo></mrow></math></span>) show distinct cleavages and zig-zag crack paths at the atomic scale, with crack deflection toward orientations with lower resistance to cracking. The cleavages and crack deflection increase the fracture surface area, which enables more energy dissipation during the fracture process and leads to higher fracture toughness. Surface energy of crystal planes determined by first-principles calculations is broadly consistent in ranking with the fracture toughness measured by experiments, which further confirm the anisotropic nature in fracture of the GZO single crystal. Finally, we calculate the broken bond energy density in different crystal planes during fracture and identify its strong correlation with fracture toughness.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"289 ","pages":"Article 120944"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic fracture in gadolinium zirconate single crystal: Micromechanical testing and modelling\",\"authors\":\"Yang Liu , Geetha Balakrishnan , Monica Ciomaga Hatnean , Ping Xiao , Ying Chen\",\"doi\":\"10.1016/j.actamat.2025.120944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We report a study on anisotropic fracture in gadolinium zirconate (GZO) using a combination of micromechanical testing and modelling. A GZO single crystal was grown using the floating zone method, and its fracture toughness in 8 different orientations was measured through the microcantilever beam bending tests. The fracture toughness, <span><math><msub><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow></msub></math></span>, of the GZO single crystal depends on its crystal orientation and follows this ranking order:<span><math><mrow><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>7</mn><mspace></mspace><mover><mn>7</mn><mo>¯</mo></mover><mspace></mspace><mn>3</mn></mrow><mo>)</mo></mrow></msubsup><mo>></mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>1</mn><mspace></mspace><mover><mn>1</mn><mo>¯</mo></mover><mspace></mspace><mn>5</mn></mrow><mo>)</mo></mrow></msubsup><mo>></mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>1</mn><mspace></mspace><mover><mn>1</mn><mo>¯</mo></mover><mspace></mspace><mn>1</mn></mrow><mo>)</mo></mrow></msubsup><mo>></mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>1</mn><mspace></mspace><mover><mn>1</mn><mo>¯</mo></mover><mspace></mspace><mn>2</mn></mrow><mo>)</mo></mrow></msubsup><mo>></mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>3</mn><mspace></mspace><mover><mn>3</mn><mo>¯</mo></mover><mspace></mspace><mn>1</mn></mrow><mo>)</mo></mrow></msubsup><mo>></mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>0</mn><mspace></mspace><mn>0</mn><mspace></mspace><mn>1</mn></mrow><mo>)</mo></mrow></msubsup><mo>></mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>1</mn><mspace></mspace><mover><mn>1</mn><mo>¯</mo></mover><mspace></mspace><mn>3</mn></mrow><mo>)</mo></mrow></msubsup><mo>></mo><msubsup><mi>K</mi><mrow><mi>I</mi><mi>C</mi></mrow><mrow><mo>(</mo><mrow><mn>1</mn><mspace></mspace><mover><mn>1</mn><mo>¯</mo></mover><mspace></mspace><mn>0</mn></mrow><mo>)</mo><mspace></mspace></mrow></msubsup></mrow></math></span>. Fractographic analysis reveals that the crystal planes with low fracture toughness (e.g., <span><math><mrow><mo>(</mo><mrow><mn>0</mn><mspace></mspace><mn>0</mn><mspace></mspace><mn>1</mn></mrow><mo>)</mo></mrow></math></span>) exhibit atomically smooth fracture surfaces. In contrast, planes with higher fracture toughness (e.g., <span><math><mrow><mo>(</mo><mrow><mn>1</mn><mspace></mspace><mover><mn>1</mn><mo>¯</mo></mover><mspace></mspace><mn>5</mn></mrow><mo>)</mo></mrow></math></span>) show distinct cleavages and zig-zag crack paths at the atomic scale, with crack deflection toward orientations with lower resistance to cracking. The cleavages and crack deflection increase the fracture surface area, which enables more energy dissipation during the fracture process and leads to higher fracture toughness. Surface energy of crystal planes determined by first-principles calculations is broadly consistent in ranking with the fracture toughness measured by experiments, which further confirm the anisotropic nature in fracture of the GZO single crystal. Finally, we calculate the broken bond energy density in different crystal planes during fracture and identify its strong correlation with fracture toughness.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"289 \",\"pages\":\"Article 120944\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645425002368\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425002368","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Anisotropic fracture in gadolinium zirconate single crystal: Micromechanical testing and modelling
We report a study on anisotropic fracture in gadolinium zirconate (GZO) using a combination of micromechanical testing and modelling. A GZO single crystal was grown using the floating zone method, and its fracture toughness in 8 different orientations was measured through the microcantilever beam bending tests. The fracture toughness, , of the GZO single crystal depends on its crystal orientation and follows this ranking order:. Fractographic analysis reveals that the crystal planes with low fracture toughness (e.g., ) exhibit atomically smooth fracture surfaces. In contrast, planes with higher fracture toughness (e.g., ) show distinct cleavages and zig-zag crack paths at the atomic scale, with crack deflection toward orientations with lower resistance to cracking. The cleavages and crack deflection increase the fracture surface area, which enables more energy dissipation during the fracture process and leads to higher fracture toughness. Surface energy of crystal planes determined by first-principles calculations is broadly consistent in ranking with the fracture toughness measured by experiments, which further confirm the anisotropic nature in fracture of the GZO single crystal. Finally, we calculate the broken bond energy density in different crystal planes during fracture and identify its strong correlation with fracture toughness.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.