赖氨酸乳酸化在肿瘤和炎症性肺部疾病中的作用(综述)。

IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
International journal of molecular medicine Pub Date : 2025-05-01 Epub Date: 2025-03-07 DOI:10.3892/ijmm.2025.5512
Shanshan Wang, Hongyan Zheng, Jianping Zhao, Jungang Xie
{"title":"赖氨酸乳酸化在肿瘤和炎症性肺部疾病中的作用(综述)。","authors":"Shanshan Wang, Hongyan Zheng, Jianping Zhao, Jungang Xie","doi":"10.3892/ijmm.2025.5512","DOIUrl":null,"url":null,"abstract":"<p><p>Protein lysine lactylation is a ubiquitous and post‑translational modification of lysine residues that involves the addition of a lactyl group on both histone and non‑histone proteins. This process plays a pivotal role in human health and disease and was first discovered in 2019. This epigenetic modification regulates gene transcription from chromatin or directly influences non‑histone proteins by modulating protein‑DNA/protein interactions, activity and stability. The dual functions of lactylation in both histone and non‑histone proteins establish it as a crucial mechanism involved in various cellular processes, such as cell proliferation, differentiation, immune and inflammatory responses and metabolism. Specific enzymes, referred to as 'writers' and 'erasers', catalyze the addition or removal of lactyl groups at designated lysine sites, thereby dynamically modulating lactylation through alterations in their enzymatic activities. The respiratory system has a remarkably intricate metabolic profile. Numerous pulmonary diseases feature an atypical transition towards glycolytic metabolism, which is linked to an overproduction of lactate, a possible substrate for lactylation. However, there has yet to be a comprehensive review elucidating the full impact of lactylation on the onset, progression and potential treatment of neoplastic and inflammatory pulmonary diseases. In the present review, an extensive overview of the discovery of lactylation and advancements in research on the existing lactylation sites were discussed. Furthermore, the review particularly investigated the potential roles and mechanisms of histone and non‑histone lactylation in various neoplastic and inflammatory pulmonary diseases, including non‑small cell lung cancers, malignant pleural effusion, pulmonary fibrosis, acute lung injury and asthma, to excavate the new therapeutic effects of post‑translational modification on various pulmonary diseases.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 5","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913435/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role of lysine lactylation in neoplastic and inflammatory pulmonary diseases (Review).\",\"authors\":\"Shanshan Wang, Hongyan Zheng, Jianping Zhao, Jungang Xie\",\"doi\":\"10.3892/ijmm.2025.5512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein lysine lactylation is a ubiquitous and post‑translational modification of lysine residues that involves the addition of a lactyl group on both histone and non‑histone proteins. This process plays a pivotal role in human health and disease and was first discovered in 2019. This epigenetic modification regulates gene transcription from chromatin or directly influences non‑histone proteins by modulating protein‑DNA/protein interactions, activity and stability. The dual functions of lactylation in both histone and non‑histone proteins establish it as a crucial mechanism involved in various cellular processes, such as cell proliferation, differentiation, immune and inflammatory responses and metabolism. Specific enzymes, referred to as 'writers' and 'erasers', catalyze the addition or removal of lactyl groups at designated lysine sites, thereby dynamically modulating lactylation through alterations in their enzymatic activities. The respiratory system has a remarkably intricate metabolic profile. Numerous pulmonary diseases feature an atypical transition towards glycolytic metabolism, which is linked to an overproduction of lactate, a possible substrate for lactylation. However, there has yet to be a comprehensive review elucidating the full impact of lactylation on the onset, progression and potential treatment of neoplastic and inflammatory pulmonary diseases. In the present review, an extensive overview of the discovery of lactylation and advancements in research on the existing lactylation sites were discussed. Furthermore, the review particularly investigated the potential roles and mechanisms of histone and non‑histone lactylation in various neoplastic and inflammatory pulmonary diseases, including non‑small cell lung cancers, malignant pleural effusion, pulmonary fibrosis, acute lung injury and asthma, to excavate the new therapeutic effects of post‑translational modification on various pulmonary diseases.</p>\",\"PeriodicalId\":14086,\"journal\":{\"name\":\"International journal of molecular medicine\",\"volume\":\"55 5\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913435/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of molecular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/ijmm.2025.5512\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2025.5512","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质赖氨酸乳酸化是一种普遍存在的赖氨酸残基的翻译后修饰,包括在组蛋白和非组蛋白上添加一个乳酸基。这一过程在人类健康和疾病中起着关键作用,并于2019年首次被发现。这种表观遗传修饰通过调节蛋白质- DNA/蛋白质的相互作用、活性和稳定性来调节染色质的基因转录或直接影响非组蛋白。组蛋白和非组蛋白中乳酸化的双重功能使其成为参与多种细胞过程的关键机制,如细胞增殖、分化、免疫和炎症反应以及代谢。特定的酶,被称为“书写者”和“擦除者”,催化在指定赖氨酸位点上添加或去除丙基,从而通过改变其酶活性来动态调节乳酸化。呼吸系统具有非常复杂的代谢特征。许多肺部疾病都具有向糖酵解代谢过渡的非典型特征,这与乳酸盐的过量产生有关,乳酸盐可能是乳酸化的底物。然而,目前还没有一篇全面的综述来阐明乳酸化对肿瘤和炎症性肺部疾病的发病、进展和潜在治疗的全面影响。在本综述中,广泛概述了发现的乳酸化和研究进展的现有的乳酸化位点进行了讨论。此外,本文还重点研究了组蛋白和非组蛋白乳酸化在非小细胞肺癌、恶性胸腔积液、肺纤维化、急性肺损伤和哮喘等多种肿瘤性和炎症性肺部疾病中的潜在作用和机制,以挖掘翻译后修饰在多种肺部疾病中的治疗新作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of lysine lactylation in neoplastic and inflammatory pulmonary diseases (Review).

Protein lysine lactylation is a ubiquitous and post‑translational modification of lysine residues that involves the addition of a lactyl group on both histone and non‑histone proteins. This process plays a pivotal role in human health and disease and was first discovered in 2019. This epigenetic modification regulates gene transcription from chromatin or directly influences non‑histone proteins by modulating protein‑DNA/protein interactions, activity and stability. The dual functions of lactylation in both histone and non‑histone proteins establish it as a crucial mechanism involved in various cellular processes, such as cell proliferation, differentiation, immune and inflammatory responses and metabolism. Specific enzymes, referred to as 'writers' and 'erasers', catalyze the addition or removal of lactyl groups at designated lysine sites, thereby dynamically modulating lactylation through alterations in their enzymatic activities. The respiratory system has a remarkably intricate metabolic profile. Numerous pulmonary diseases feature an atypical transition towards glycolytic metabolism, which is linked to an overproduction of lactate, a possible substrate for lactylation. However, there has yet to be a comprehensive review elucidating the full impact of lactylation on the onset, progression and potential treatment of neoplastic and inflammatory pulmonary diseases. In the present review, an extensive overview of the discovery of lactylation and advancements in research on the existing lactylation sites were discussed. Furthermore, the review particularly investigated the potential roles and mechanisms of histone and non‑histone lactylation in various neoplastic and inflammatory pulmonary diseases, including non‑small cell lung cancers, malignant pleural effusion, pulmonary fibrosis, acute lung injury and asthma, to excavate the new therapeutic effects of post‑translational modification on various pulmonary diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International journal of molecular medicine
International journal of molecular medicine 医学-医学:研究与实验
CiteScore
12.30
自引率
0.00%
发文量
124
审稿时长
3 months
期刊介绍: The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality. The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research. All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信