研究作为庆大霉素给药系统的电纺形状记忆贴片。

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY
S Pisani, A Piazza, R Dorati, I Genta, M Rosalia, E Chiesa, G Bruni, R Migliavacca, B Conti
{"title":"研究作为庆大霉素给药系统的电纺形状记忆贴片。","authors":"S Pisani, A Piazza, R Dorati, I Genta, M Rosalia, E Chiesa, G Bruni, R Migliavacca, B Conti","doi":"10.1016/j.ijpharm.2025.125393","DOIUrl":null,"url":null,"abstract":"<p><p>Goal of this study is to apply electrospinning technology for manufacturing polymeric drug delivery systems with thermal sensitive shape memory behaviour. The hypothesis is to obtain electrospun patches loaded with an antibiotic drug to be implanted into the human body by minimal invasive technique, as local anti-infective therapy for surgical site infections treatment. Polylactide-co-polycaprolactone 70:30 (PLLA-co-PCL 70:30) was selected as temperature responsive polymer due to its Tg° value (32-42 °C) in the range of body temperature. Gentamicin (GS) was selected because used in last-line therapy against multidrug-resistant bacteria with several side effects upon its systemic administration. After been manufactured, the electrospun patches underwent thermalshape memory thermal treatment (SMT) applying different thermal conditions and they were characterized before and after SMT by SEM, DSC, mechanical testing and antibacterial effect on S. Aureus clinical strains. The results show that shape memory property of PLLA-co-PCL 70:30 patches is maintained both after GS loading and SMT at 60 °C that did not affect both nanofiber morphology and drug release. A change in copolymer conformation due to electrospinning occurs and GS loading, as highlighted by changes in patches thermal behaviour. The matrices mechanical properties address their application to internal surgical wounds, mainly soft tissues. Patches antimicrobial effect gave promising positive results for Gentamicin-susceptible strains, including a clinical isolate.</p>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":" ","pages":"125393"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating electrospun shape memory patches as Gentamicin drug delivery system.\",\"authors\":\"S Pisani, A Piazza, R Dorati, I Genta, M Rosalia, E Chiesa, G Bruni, R Migliavacca, B Conti\",\"doi\":\"10.1016/j.ijpharm.2025.125393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Goal of this study is to apply electrospinning technology for manufacturing polymeric drug delivery systems with thermal sensitive shape memory behaviour. The hypothesis is to obtain electrospun patches loaded with an antibiotic drug to be implanted into the human body by minimal invasive technique, as local anti-infective therapy for surgical site infections treatment. Polylactide-co-polycaprolactone 70:30 (PLLA-co-PCL 70:30) was selected as temperature responsive polymer due to its Tg° value (32-42 °C) in the range of body temperature. Gentamicin (GS) was selected because used in last-line therapy against multidrug-resistant bacteria with several side effects upon its systemic administration. After been manufactured, the electrospun patches underwent thermalshape memory thermal treatment (SMT) applying different thermal conditions and they were characterized before and after SMT by SEM, DSC, mechanical testing and antibacterial effect on S. Aureus clinical strains. The results show that shape memory property of PLLA-co-PCL 70:30 patches is maintained both after GS loading and SMT at 60 °C that did not affect both nanofiber morphology and drug release. A change in copolymer conformation due to electrospinning occurs and GS loading, as highlighted by changes in patches thermal behaviour. The matrices mechanical properties address their application to internal surgical wounds, mainly soft tissues. Patches antimicrobial effect gave promising positive results for Gentamicin-susceptible strains, including a clinical isolate.</p>\",\"PeriodicalId\":14187,\"journal\":{\"name\":\"International Journal of Pharmaceutics\",\"volume\":\" \",\"pages\":\"125393\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijpharm.2025.125393\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijpharm.2025.125393","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating electrospun shape memory patches as Gentamicin drug delivery system.

Goal of this study is to apply electrospinning technology for manufacturing polymeric drug delivery systems with thermal sensitive shape memory behaviour. The hypothesis is to obtain electrospun patches loaded with an antibiotic drug to be implanted into the human body by minimal invasive technique, as local anti-infective therapy for surgical site infections treatment. Polylactide-co-polycaprolactone 70:30 (PLLA-co-PCL 70:30) was selected as temperature responsive polymer due to its Tg° value (32-42 °C) in the range of body temperature. Gentamicin (GS) was selected because used in last-line therapy against multidrug-resistant bacteria with several side effects upon its systemic administration. After been manufactured, the electrospun patches underwent thermalshape memory thermal treatment (SMT) applying different thermal conditions and they were characterized before and after SMT by SEM, DSC, mechanical testing and antibacterial effect on S. Aureus clinical strains. The results show that shape memory property of PLLA-co-PCL 70:30 patches is maintained both after GS loading and SMT at 60 °C that did not affect both nanofiber morphology and drug release. A change in copolymer conformation due to electrospinning occurs and GS loading, as highlighted by changes in patches thermal behaviour. The matrices mechanical properties address their application to internal surgical wounds, mainly soft tissues. Patches antimicrobial effect gave promising positive results for Gentamicin-susceptible strains, including a clinical isolate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信