J Leuenberger, F Esnault, P L Lebas, S Fournet, M P Cann, S Marhadour, C Prodhomme, M L Pilet-Nayel, M C Kerlan
{"title":"通过 GWAS 鉴定与培育抗 Globodera pallida 马铃薯相关的标记单倍型。","authors":"J Leuenberger, F Esnault, P L Lebas, S Fournet, M P Cann, S Marhadour, C Prodhomme, M L Pilet-Nayel, M C Kerlan","doi":"10.1007/s00122-024-04794-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Identified and validated QTL GpaVa_MRQ and GpaIX_MRQ provide robust tools for improving potato resistance to Globodera pallida via marker-assisted selection. Potato (Solanum tuberosum L.), a vital food crop globally, faces significant yield losses due to potato cyst nematodes (PCN). This study aimed to identify and validate genomic regions conferring resistance to Globodera pallida, to facilitate the development of resistant potato varieties through marker-assisted selection (MAS). We conducted Genome-Wide Association Studies (GWAS) on a pre-breeding panel genotyped using Genotyping by Sequencing (GBS) and the SolCAP DNA array. Significant resistance-associated SNP markers were identified on chromosomes III, IV, V, IX and XI. Quantitative trait loci (QTL), including the major-effect QTL GpaVa_MRQ on chromosome V and the QTL GpaIX_MRQ on chromosome IX, were validated and shown to account for substantial phenotypic variance in a validation potato panel. Haplotype-based marker sets were defined at four QTL regions, enabling the practical application of MAS. The successful conversion of SNPs to PACE markers at the two main QTL GpaVa_MRQ and GpaIX_MRQ further supports their use in breeding programs. This study provides valuable insights and robust tools for enhancing potato resistance to G. pallida, contributing to sustainable agricultural practices and global food security.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 3","pages":"52"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification by GWAS of marker haplotypes relevant to breed potato for Globodera pallida resistance.\",\"authors\":\"J Leuenberger, F Esnault, P L Lebas, S Fournet, M P Cann, S Marhadour, C Prodhomme, M L Pilet-Nayel, M C Kerlan\",\"doi\":\"10.1007/s00122-024-04794-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>Identified and validated QTL GpaVa_MRQ and GpaIX_MRQ provide robust tools for improving potato resistance to Globodera pallida via marker-assisted selection. Potato (Solanum tuberosum L.), a vital food crop globally, faces significant yield losses due to potato cyst nematodes (PCN). This study aimed to identify and validate genomic regions conferring resistance to Globodera pallida, to facilitate the development of resistant potato varieties through marker-assisted selection (MAS). We conducted Genome-Wide Association Studies (GWAS) on a pre-breeding panel genotyped using Genotyping by Sequencing (GBS) and the SolCAP DNA array. Significant resistance-associated SNP markers were identified on chromosomes III, IV, V, IX and XI. Quantitative trait loci (QTL), including the major-effect QTL GpaVa_MRQ on chromosome V and the QTL GpaIX_MRQ on chromosome IX, were validated and shown to account for substantial phenotypic variance in a validation potato panel. Haplotype-based marker sets were defined at four QTL regions, enabling the practical application of MAS. The successful conversion of SNPs to PACE markers at the two main QTL GpaVa_MRQ and GpaIX_MRQ further supports their use in breeding programs. This study provides valuable insights and robust tools for enhancing potato resistance to G. pallida, contributing to sustainable agricultural practices and global food security.</p>\",\"PeriodicalId\":22955,\"journal\":{\"name\":\"Theoretical and Applied Genetics\",\"volume\":\"138 3\",\"pages\":\"52\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Genetics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s00122-024-04794-8\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-024-04794-8","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Identification by GWAS of marker haplotypes relevant to breed potato for Globodera pallida resistance.
Key message: Identified and validated QTL GpaVa_MRQ and GpaIX_MRQ provide robust tools for improving potato resistance to Globodera pallida via marker-assisted selection. Potato (Solanum tuberosum L.), a vital food crop globally, faces significant yield losses due to potato cyst nematodes (PCN). This study aimed to identify and validate genomic regions conferring resistance to Globodera pallida, to facilitate the development of resistant potato varieties through marker-assisted selection (MAS). We conducted Genome-Wide Association Studies (GWAS) on a pre-breeding panel genotyped using Genotyping by Sequencing (GBS) and the SolCAP DNA array. Significant resistance-associated SNP markers were identified on chromosomes III, IV, V, IX and XI. Quantitative trait loci (QTL), including the major-effect QTL GpaVa_MRQ on chromosome V and the QTL GpaIX_MRQ on chromosome IX, were validated and shown to account for substantial phenotypic variance in a validation potato panel. Haplotype-based marker sets were defined at four QTL regions, enabling the practical application of MAS. The successful conversion of SNPs to PACE markers at the two main QTL GpaVa_MRQ and GpaIX_MRQ further supports their use in breeding programs. This study provides valuable insights and robust tools for enhancing potato resistance to G. pallida, contributing to sustainable agricultural practices and global food security.
期刊介绍:
Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.