{"title":"Deep learning and hyperspectral features for seedling stage identification of barnyard grass in paddy field.","authors":"Siqiao Tan, Qiang Xie, Wenshuai Zhu, Yangjun Deng, Lei Zhu, Xiaoqiao Yu, Zheming Yuan, Yuan Chen","doi":"10.3389/fpls.2025.1507442","DOIUrl":null,"url":null,"abstract":"<p><p>Barnyard grass, a pernicious weed thriving in rice fields, poses a significant challenge to agricultural productivity. Detection of barnyard grass before the four-leaf stage is critical for effective control measures. However, due to their striking visual similarity, separating them from rice seedlings at early growth stages is daunting using traditional visible light imaging models. To explore the feasibility of hyperspectral identification of barnyard grass and rice in the seedling stage, we have pioneered the DeepBGS hyperspectral feature parsing framework. This approach harnesses the power of deep convolutional networks to automate the extraction of pertinent information. Initially, a sliding window-based technique is employed to transform the one-dimensional spectral band sequence into a more interpretable two-dimensional matrix. Subsequently, a deep convolutional feature extraction module, ensembled with a bilayer LSTM module, is deployed to capture both global and local correlations inherent within hyperspectral bands. The efficacy of DeepBGS was underscored by its unparalleled performance in discriminating barnyard grass from rice during the critical 2-3 leaf stage, achieving a 98.18% accuracy rate. Notably, this surpasses the capabilities of other models that rely on amalgamations of machine learning algorithms and feature dimensionality reduction methods. By seamlessly integrating deep convolutional networks, DeepBGS independently extracts salient features, indicating that hyperspectral imaging technology can be used to effectively identify barnyard grass in the early stages, and pave the way for the development of advanced early detection systems.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1507442"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842386/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1507442","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Deep learning and hyperspectral features for seedling stage identification of barnyard grass in paddy field.
Barnyard grass, a pernicious weed thriving in rice fields, poses a significant challenge to agricultural productivity. Detection of barnyard grass before the four-leaf stage is critical for effective control measures. However, due to their striking visual similarity, separating them from rice seedlings at early growth stages is daunting using traditional visible light imaging models. To explore the feasibility of hyperspectral identification of barnyard grass and rice in the seedling stage, we have pioneered the DeepBGS hyperspectral feature parsing framework. This approach harnesses the power of deep convolutional networks to automate the extraction of pertinent information. Initially, a sliding window-based technique is employed to transform the one-dimensional spectral band sequence into a more interpretable two-dimensional matrix. Subsequently, a deep convolutional feature extraction module, ensembled with a bilayer LSTM module, is deployed to capture both global and local correlations inherent within hyperspectral bands. The efficacy of DeepBGS was underscored by its unparalleled performance in discriminating barnyard grass from rice during the critical 2-3 leaf stage, achieving a 98.18% accuracy rate. Notably, this surpasses the capabilities of other models that rely on amalgamations of machine learning algorithms and feature dimensionality reduction methods. By seamlessly integrating deep convolutional networks, DeepBGS independently extracts salient features, indicating that hyperspectral imaging technology can be used to effectively identify barnyard grass in the early stages, and pave the way for the development of advanced early detection systems.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.