{"title":"单电子波包上的等离子体-极化子模式","authors":"I. M. Akimov, P. O. Kazinski, A. A. Sokolov","doi":"10.1103/physrevd.111.036028","DOIUrl":null,"url":null,"abstract":"The explicit expression for the photon polarization operator in the presence of a single electron is found in the i</a:mi>n</a:mi>−</a:mo>i</a:mi>n</a:mi></a:math> formalism in the one-loop approximation out of the photon mass shell. This polarization operator describes the dielectric permittivity of a single electron wave packet in coherent scattering processes. The plasmons and plasmon-polaritons supported by a single electron wave packet are described. The two limiting cases are considered: the wavelength of the external electromagnetic field is much smaller than the typical scale of variations of the electron wave packet and the wavelength of the external electromagnetic field is much larger than the size of the electron wave packet. In the former case, there are eight independent plasmon-polariton modes. In the latter case, the plasmons boil down to the dynamical dipole moment attached to a point electron. Thus, in the infrared limit, the electron possesses a dynamical electric dipole moment manifesting itself in coherent scattering processes. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"1 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasmon-polariton modes on a single electron wave packet\",\"authors\":\"I. M. Akimov, P. O. Kazinski, A. A. Sokolov\",\"doi\":\"10.1103/physrevd.111.036028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The explicit expression for the photon polarization operator in the presence of a single electron is found in the i</a:mi>n</a:mi>−</a:mo>i</a:mi>n</a:mi></a:math> formalism in the one-loop approximation out of the photon mass shell. This polarization operator describes the dielectric permittivity of a single electron wave packet in coherent scattering processes. The plasmons and plasmon-polaritons supported by a single electron wave packet are described. The two limiting cases are considered: the wavelength of the external electromagnetic field is much smaller than the typical scale of variations of the electron wave packet and the wavelength of the external electromagnetic field is much larger than the size of the electron wave packet. In the former case, there are eight independent plasmon-polariton modes. In the latter case, the plasmons boil down to the dynamical dipole moment attached to a point electron. Thus, in the infrared limit, the electron possesses a dynamical electric dipole moment manifesting itself in coherent scattering processes. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.036028\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.036028","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Plasmon-polariton modes on a single electron wave packet
The explicit expression for the photon polarization operator in the presence of a single electron is found in the in−in formalism in the one-loop approximation out of the photon mass shell. This polarization operator describes the dielectric permittivity of a single electron wave packet in coherent scattering processes. The plasmons and plasmon-polaritons supported by a single electron wave packet are described. The two limiting cases are considered: the wavelength of the external electromagnetic field is much smaller than the typical scale of variations of the electron wave packet and the wavelength of the external electromagnetic field is much larger than the size of the electron wave packet. In the former case, there are eight independent plasmon-polariton modes. In the latter case, the plasmons boil down to the dynamical dipole moment attached to a point electron. Thus, in the infrared limit, the electron possesses a dynamical electric dipole moment manifesting itself in coherent scattering processes. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.