节能d2d辅助双无人机数据采集

IF 1.6 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Qiulei Huang;Wei Wang;Zhaohui Song;Nan Zhao
{"title":"节能d2d辅助双无人机数据采集","authors":"Qiulei Huang;Wei Wang;Zhaohui Song;Nan Zhao","doi":"10.23919/cje.2023.00.271","DOIUrl":null,"url":null,"abstract":"Aided by device-to-device (D2D) connections, unmanned aerial vehicle (UAV) can significantly enhance the coverage of wireless communications. In this paper, we consider a data collection system with the assistance of D2D, where two fixed-wing UAVs as aerial base stations cooperatively serve the ground devices. To accommodate more devices, we propose two effective algorithms to establish the multi-hop D2D connections. Then, the user scheduling, UAV trajectory, and transmit power are jointly optimized to maximize the energy efficiency, which is a non-convex problem. Accordingly, we decompose it into three subproblems. The scheduling optimization is first converted into a linear programming. Then, the trajectory design and the transmit power optimization are reformulated as two convex problems by the Dinkelbach method. Finally, an iterative algorithm is proposed to effectively solve the original problem. Simulation results are presented to verify the effectiveness of the proposed scheme.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"34 1","pages":"176-185"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10891977","citationCount":"0","resultStr":"{\"title\":\"Energy-Efficient D2D-Aided Dual UAV Data Collection\",\"authors\":\"Qiulei Huang;Wei Wang;Zhaohui Song;Nan Zhao\",\"doi\":\"10.23919/cje.2023.00.271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aided by device-to-device (D2D) connections, unmanned aerial vehicle (UAV) can significantly enhance the coverage of wireless communications. In this paper, we consider a data collection system with the assistance of D2D, where two fixed-wing UAVs as aerial base stations cooperatively serve the ground devices. To accommodate more devices, we propose two effective algorithms to establish the multi-hop D2D connections. Then, the user scheduling, UAV trajectory, and transmit power are jointly optimized to maximize the energy efficiency, which is a non-convex problem. Accordingly, we decompose it into three subproblems. The scheduling optimization is first converted into a linear programming. Then, the trajectory design and the transmit power optimization are reformulated as two convex problems by the Dinkelbach method. Finally, an iterative algorithm is proposed to effectively solve the original problem. Simulation results are presented to verify the effectiveness of the proposed scheme.\",\"PeriodicalId\":50701,\"journal\":{\"name\":\"Chinese Journal of Electronics\",\"volume\":\"34 1\",\"pages\":\"176-185\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10891977\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10891977/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10891977/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在设备对设备(D2D)连接的帮助下,无人机(UAV)可以显著增强无线通信的覆盖范围。在本文中,我们考虑了一个基于D2D的数据采集系统,其中两架固定翼无人机作为空中基站协同服务于地面设备。为了适应更多的设备,我们提出了两种有效的算法来建立多跳D2D连接。然后,联合优化用户调度、无人机轨迹和发射功率,以实现能源效率最大化,这是一个非凸问题。相应地,我们将其分解为三个子问题。首先将调度优化问题转化为线性规划问题。然后,利用Dinkelbach方法将弹道设计和发射功率优化重新表述为两个凸问题。最后,提出了一种有效求解原问题的迭代算法。仿真结果验证了该方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-Efficient D2D-Aided Dual UAV Data Collection
Aided by device-to-device (D2D) connections, unmanned aerial vehicle (UAV) can significantly enhance the coverage of wireless communications. In this paper, we consider a data collection system with the assistance of D2D, where two fixed-wing UAVs as aerial base stations cooperatively serve the ground devices. To accommodate more devices, we propose two effective algorithms to establish the multi-hop D2D connections. Then, the user scheduling, UAV trajectory, and transmit power are jointly optimized to maximize the energy efficiency, which is a non-convex problem. Accordingly, we decompose it into three subproblems. The scheduling optimization is first converted into a linear programming. Then, the trajectory design and the transmit power optimization are reformulated as two convex problems by the Dinkelbach method. Finally, an iterative algorithm is proposed to effectively solve the original problem. Simulation results are presented to verify the effectiveness of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Electronics
Chinese Journal of Electronics 工程技术-工程:电子与电气
CiteScore
3.70
自引率
16.70%
发文量
342
审稿时长
12.0 months
期刊介绍: CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信