IL-15:从发现到FDA批准

IF 29.5 1区 医学 Q1 HEMATOLOGY
Zihai Li, John Wrangle, Kai He, Jonathan Sprent, Mark P. Rubinstein
{"title":"IL-15:从发现到FDA批准","authors":"Zihai Li, John Wrangle, Kai He, Jonathan Sprent, Mark P. Rubinstein","doi":"10.1186/s13045-025-01664-8","DOIUrl":null,"url":null,"abstract":"<p>In April 2024, the FDA approved the interleukin (IL)−15 superagonist, N-803 (Anktiva, nogapendekin alfa inbakicept-pmln), for the treatment of bladder cancer [1]. This is the first cytokine in over 30 years to receive FDA approval for the treatment of cancer, and the culmination of years of preclinical and clinical studies involving both academic- and industry- driven research.</p><p>To understand the steps leading to this landmark approval, it is helpful to review some key historical events (Fig. 1). Notably, the first cytokines FDA approved for the treatment of cancer were interferon (type 1) (1986, hairy cell leukemia) and IL-2 (1992, renal cell carcinoma) [2]. Within a few years of their initial approvals, both cytokines would also receive other FDA approvals including for the treatment of metastatic melanoma. While both cytokines have broad immune stimulatory activities, IL-2 is unique in that it is also a powerful lymphocyte growth factor [3,4,5,6]. These qualities led to the evaluation and use of IL-2 with many other experimental immunotherapies including adoptive cell therapy. Notably, the adoptive transfer of tumor infiltrating lymphocytes (TIL) in combination with IL-2 first showed efficacy in human patients in the late 1980s [7]. After decades of work, in February 2024, TIL (lifileucel) in combination with IL-2 received FDA approval for the treatment of melanoma [8], which is the first approved adoptive cell therapy using lymphocytes for the treatment of a solid tumor.</p><figure><figcaption><b data-test=\"figure-caption-text\">Fig. 1</b></figcaption><picture><source srcset=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13045-025-01664-8/MediaObjects/13045_2025_1664_Fig1_HTML.png?as=webp\" type=\"image/webp\"/><img alt=\"figure 1\" aria-describedby=\"Fig1\" height=\"170\" loading=\"lazy\" src=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13045-025-01664-8/MediaObjects/13045_2025_1664_Fig1_HTML.png\" width=\"685\"/></picture><p>Timeline of key events related to the discovery and development of IL-15 and BCG as therapeutics</p><span>Full size image</span><svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"><use xlink:href=\"#icon-eds-i-chevron-right-small\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"></use></svg></figure><p>Despite its established efficacy, IL-2 has a short half-life, and at approved doses, IL-2 can induce life threatening toxicities [9]. This side effect profile likely severely curtailed subsequent clinical development. Thus, high dose IL-2 as a monotherapy was FDA approved for renal cell carcinoma and metastatic melanoma, clinical development for other indications halted despite evidence of efficacy in other cancers [10]. Thus began the effort to develop alternatives with a similar mechanism of action.</p><p>The discovery of IL-15 in 1994 was the first step in the development of a promising alternative to IL-2 [4,5,6, 11,12,13]. Like IL-2, IL-15 is a powerful lymphocyte growth factor for CD8<sup>+</sup> T cells and NK cells. Both IL-2 and IL-15 induce similar intracellular signaling through the shared IL-2 receptor (R) βγ subunits. However, while the private IL-2Rα (CD25) subunit improves responsiveness to limiting amounts of IL-2, IL-15 signals independently of IL-2Rα. Because IL-2Rα is expressed at high and constitutive levels on immune suppressive T regulatory cells, an advantage of IL-15 is that it does not expand T regulatory cells. By itself, IL-15 can induce anti-tumor activity in preclinical models [4, 5, 13]. Interestingly, IL-15 can be induced by type I interferon signaling [14, 15], which suggests a mechanism for type 1 interferon-mediated anti-tumor efficacy. Further differentiating IL-15 from IL-2 is the private IL-15Rα subunit. While thought to allow for high affinity cytokine binding, the description of IL-15Rα as a receptor is somewhat of a misnomer as IL-15Rα can transpresent IL-15 either on the cell surface or in soluble format [4, 16]. Building off this knowledge, we and others found that pre-association of soluble IL-15Rα subunit with IL-15 (with or without an Fc) could dramatically improve biological activity and half-life of IL-15 in vitro and in vivo, and these IL-15/IL-15Rα complexes had potent anti-tumor activity [17,18,19,20,21]. Based on this concept (Fig. 2), several companies have developed clinical grade reagents including N-803 (Anktiva), NIZ985, SOT101 (Nanrilkefusp alfa), and XmAb24306 (Efbalropendekin alfa) [22,23,24,25,26].</p><figure><figcaption><b data-test=\"figure-caption-text\">Fig. 2</b></figcaption><picture><source srcset=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13045-025-01664-8/MediaObjects/13045_2025_1664_Fig2_HTML.png?as=webp\" type=\"image/webp\"/><img alt=\"figure 2\" aria-describedby=\"Fig2\" height=\"441\" loading=\"lazy\" src=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13045-025-01664-8/MediaObjects/13045_2025_1664_Fig2_HTML.png\" width=\"685\"/></picture><p>Diagram of N-803 (IL-15/IL-15Rα cytokine complexes) including IL-15, IL-15Rα, and the Fc region from IgG1</p><span>Full size image</span><svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"><use xlink:href=\"#icon-eds-i-chevron-right-small\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"></use></svg></figure><p>These IL-15 superagonists have now been evaluated in a wide range of clinical trials including patients with cancer and HIV-1 infection [23,24,25,26,27,28,29,30]. Similar to animal studies, human trials have shown IL-15/IL-15Rα complexes have improved half-life and cytokine-induced biological activity on human lymphocytes including CD8<sup>+</sup> T cells and NK cells when compared to free IL-15 [25, 31, 32]. Importantly, at the doses used, this biological activity was obtained without the severe toxicities or need for in-hospital administration associated with high dose IL-2. For the agent in most advanced clinical testing, N-803, single agent activity was shown in patients with hematological malignancies who relapsed after allogeneic hematopoietic cell transplantation [25]. We and others have shown these agents can be administered safely in combination with other immunotherapy agents and with encouraging efficacy signals [26, 28, 30]. Thus, the combination of N-803 and anti-PD-1 mAb (nivolumab) could be given safely to NSCLC patients [30], and there is an ongoing phase III trial (NCT03520686). Taking advantage of the expansion and activation of Fc receptor-expressing immune cells such as NK cells that can mediate enhanced antibody-dependent cellular cytotoxicity, IL-15-based agents show the ability to enhance the efficacy of tumor-targeting antibodies [33]. Clinically, success with this concept has been demonstrated by combination of N-803 with rituximab (anti-CD20 mAb) [28]. Another appealing approach, not yet assessed clinically, is the use of systemic IL-15 agents instead of high dose IL-2 to support adoptively transferred T cells, such as TIL, administered after lymphodepletion. In addition to approaches using early generation IL-15 agents, it is notable that other approaches are in development including the use of fusion proteins combining IL-15 with targeting moieties (such as directing IL-15 to PD-1 expressing lymphocytes) and genetically encoded membrane-bound IL-15 [34, 35]. Expression of membrane-bound IL-15 on adoptively transferred lymphocytes may improve functional capacity and reduce the need for lymphodepleting chemotherapy [36].</p><p>The treatment of non-muscle invasive bladder cancer (NMIBC) involves the use of intravesical bacillus Calmette-Guerin (BCG) to avoid cystectomy [37, 38]. BCG was initially developed as a vaccine for tuberculosis, and since initial human testing in 1921, has been the most widely used vaccine worldwide [37,38,39]. Interest in using BCG for cancer therapy resulted from work by William Coley and others showing that bacterial agents may trigger anti-tumor immunity [40, 41], and BCG use in cancer patients was reported as early as 1936 [42]. Direct evidence in support of the use of BCG to induce anti-tumor immunity was supported by animal studies conducted by Lloyd Old, Burton Zbar, and others [43,44,45,46,47]. Evidence of BCG-mediated anti-tumor activity in humans was reported as early as 1965 in a mixed patient population [48]. Soon thereafter, evidence of BCG-mediated anti-tumor activity was reported in acute lymphoblastic leukemia [49], metastatic melanoma [50], and other cancers [37, 38, 51]. While our interpretation of the use of BCG as a cancer immunotherapy might be altered with today’s modern understanding of immunology, the practical clinical results of BCG therapy in bladder cancer would prove most impactful. Thus, in 1976 Alvaro Morales reported favorable responses in 9 patients with superficial bladder cancer treated as part of the first human trial using intravesical BCG [52]. This work was followed by randomized trials confirming efficacy [53,54,55,56], leading the FDA to approve BCG for NMIBC in 1990 [37].</p><p>While intravesical BCG can lead to durable responses in NMIBC, up to 40% of patients have disease recurrence at which time patients are thought to be unresponsive to additional BCG administration [54, 57, 58]. With the goal of improving BCG-mediated anti-tumor immunity, preclinical bladder cancer studies in rats demonstrated the combination of IL-15 and BCG delivery by intravesical instillation was safe and improved anti-tumor immunity [59,60,61]. The mechanism of action in these preclinical studies was not fully established, but responses were associated with expansion of NK cells and inflammatory cytokines. Given the encouraging preclinical studies, the combination of intravesical N-803 and BCG was evaluated in NMIBC patients, and in a phase I trial, encouraging safety, tolerability, and long-term outcomes were observed [62]. Intravesical N-803 given with BCG was then evaluated in a single-arm, multicenter trial of BCG-unresponsive, high-risk NMIBC patients with carcinoma in situ with or without papillary tumors [63] (NCT0302285, QUILT-3.032). In data reported by the FDA, 62% of the 77 patients enrolled had a complete response, with 58% of patients sustaining this complete response for 12 months. This response rate far exceeded guidance of 30% complete response at 1 year set by FDA experts and the International Bladder Cancer Group [64,65,66]. As a result, in April 2024 the FDA approved N-803 with BCG for this patient population [1], which represents the first FDA approval of any IL-15 based therapy.</p><p>While this FDA approval represents a promising step for patients, critical questions remain including the need for in-depth studies to establish the mechanism of action of the combination of N-803 and BCG. The latter will be helpful for the design of future therapies for bladder cancer patients. More broadly, this FDA approval is noteworthy as it represents the first of a new era of approvals for cytokines in the treatment of cancer. For IL-15 superagonists, future approvals might be for recombinant protein or genetically encoded constructs, however, it may also be for an IL-15-concept not yet envisioned.</p><p>No datasets were generated or analysed during the current study.</p><ol data-track-component=\"outbound reference\" data-track-context=\"references section\"><li data-counter=\"1.\"><p>FDA. FDA approves nogapendekin alfa inbakicept-pmln for BCG-unresponsive non-muscle invasive bladder cancer. 2024</p></li><li data-counter=\"2.\"><p>Waldmann TA. Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol. 2018;10(12):a028472.</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\"3.\"><p>Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol. 2014;192(12):5451–8 (PMC6293462).</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"4.\"><p>Wrangle JM, Patterson A, Johnson CB, Neitzke DJ, Mehrotra S, Denlinger CE, Paulos CM, Li Z, Cole DJ, Rubinstein MP. IL-2 and beyond in cancer immunotherapy. J Interferon Cytokine Res. 2018;38(2):45–68 (PMC5815463).</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\"5.\"><p>Waldmann TA. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol. 2006;6(8):595–601.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"6.\"><p>Leonard WJ, Lin JX, O’Shea JJ. The gamma(c) family of cytokines: basic biology to therapeutic ramifications. Immunity. 2019;50(4):832–50.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"7.\"><p>Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 1988;319(25):1676–80.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"8.\"><p>Julve M, Lythgoe MP, Larkin J, Furness AJS. Lifileucel: the first cellular therapy approved for solid tumours. Trends Cancer. 2024;10(6):475–7.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"9.\"><p>Marabondo S, Kaufman HL. High-dose interleukin-2 (IL-2) for the treatment of melanoma: safety considerations and future directions. Expert Opin Drug Saf. 2017;16(12):1347–57.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"10.\"><p>Tester WJ, Kim KM, Krigel RL, Bonomi PD, Glick JH, Asbury RF, Kirkwood JM, Blum RH, Schiller JH. A randomized phase II study of interleukin-2 with and without beta-interferon for patients with advanced non-small cell lung cancer: an eastern cooperative oncology group study (PZ586). Lung Cancer. 1999;25(3):199–206.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"11.\"><p>Grabstein KH, Eisenman J, Shanebeck K, Rauch C, Srinivasan S, Fung V, Beers C, Richardson J, Schoenborn MA, Ahdieh M, et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science. 1994;264(5161):965–8.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"12.\"><p>Burton JD, Bamford RN, Peters C, Grant AJ, Kurys G, Goldman CK, Brennan J, Roessler E, Waldmann TA. A lymphokine, provisionally designated interleukin T and produced by a human adult T-cell leukemia line, stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc Natl Acad Sci USA. 1994;91(11):4935–9 (PMC43904).</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\"13.\"><p>Fehniger TA, Caligiuri MA. Interleukin 15: biology and relevance to human disease. Blood. 2001;97(1):14–32.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"14.\"><p>Zhang X, Sun S, Hwang I, Tough DF, Sprent J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity. 1998;8(5):591–9.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"15.\"><p>Lodolce JP, Burkett PR, Boone DL, Chien M, Ma A. T cell-independent interleukin 15Ralpha signals are required for bystander proliferation. J Exp Med. 2001;194(8):1187–94 (PMC2193508).</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\"16\"><p>Castillo EF, Schluns KS. Regulating the immune system via IL-15 transpresentation. Cytokine. 2012;59(3):479–90 (PMC3422378).</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\"17.\"><p>Dubois S, Patel HJ, Zhang M, Waldmann TA, Muller JR. Preassociation of IL-15 with IL-15R alpha-IgG1-Fc enhances its activity on proliferation of NK and CD8+/CD44high T cells and its antitumor action. J Immunol. 2008;180(4):2099–106.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"18.\"><p>Bergamaschi C, Rosati M, Jalah R, Valentin A, Kulkarni V, Alicea C, Zhang GM, Patel V, Felber BK, Pavlakis GN. Intracellular interaction of interleukin-15 with its receptor alpha during production leads to mutual stabilization and increased bioactivity. J Biol Chem. 2008;283(7):4189–99.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"19\"><p>Stoklasek TA, Schluns KS, Lefrancois L. Combined IL-15/IL-15Ralpha immunotherapy maximizes IL-15 activity in vivo. J Immunol. 2006;177(9):6072–80 (PMC2847275).</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"20.\"><p>Rubinstein MP, Kovar M, Purton JF, Cho JH, Boyman O, Surh CD, Sprent J. Converting IL-15 to a superagonist by binding to soluble IL-15Ralpha. Proc Natl Acad Sci U S A. 2006;103(24):9166–71 (PMC1482584).</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\"21\"><p>Mortier E, Quemener A, Vusio P, Lorenzen I, Boublik Y, Grotzinger J, Plet A, Jacques Y. Soluble interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective and potent agonist of IL-15 action through IL-15R beta/gamma. Hyperagonist IL-15 x IL-15R alpha fusion proteins. J Biol Chem. 2006;281(3):1612–9.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"22.\"><p>Han KP, Zhu X, Liu B, Jeng E, Kong L, Yovandich JL, Vyas VV, Marcus WD, Chavaillaz PA, Romero CA, Rhode PR, Wong HC. IL-15:IL-15 receptor alpha superagonist complex: high-level co-expression in recombinant mammalian cells, purification and characterization. Cytokine. 2011;56(3):804–10 (PMC3221918).</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\"23.\"><p>Lu D, Yadav R, Holder P, Chiang E, Sanjabi S, Poon V, Bernett M, Varma R, Liu K, Leung I, Bogaert L, Desjarlais J, Shivva V, Hosseini I, Ramanujan S. Complex PK-PD of an engineered IL-15/IL-15Ralpha-Fc fusion protein in cynomolgus monkeys: QSP modeling of lymphocyte dynamics. Eur J Pharm Sci. 2023;186:106450.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"24.\"><p>Danek P, Simonova E, Podzimkova N, Bechard D, Sachse R, Kiemle-Kallee J, Moebius U, Spisek R, Adkins I, Steegmaier M, Jelinkova LP. 713 Nanrilkefusp alfa, a high-affinity IL-15Rβγ agonist, promotes an innate and adaptive anti-tumour inflammatory environment as single agent or combined with anti-PD-1 in patients with advanced cancers. J Immunother Cancer. 2023;11:A808–A808.</p><p>Google Scholar </p></li><li data-counter=\"25.\"><p>Romee R, Cooley S, Berrien-Elliott MM, Westervelt P, Verneris MR, Wagner JE, Weisdorf DJ, Blazar BR, Ustun C, DeFor TE, Vivek S, Peck L, DiPersio JF, Cashen AF, Kyllo R, Musiek A, Schaffer A, Anadkat MJ, Rosman I, Miller D, Egan JO, Jeng EK, Rock A, Wong HC, Fehniger TA, &amp; Miller JS. First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. Blood 2018;131(23): 2515–2527. PMC5992862 research support from Altor BioScience, a Nantworks company, but have no financial benefit from the outcome of this trial. J.O.E., E.K.J., A.R., and H.C.W. are employees of Altor BioScience and declare direct financial conflicts. To manage these conflicts, UMN and WUSM investigators led this trial, were sponsors of the IND, managed all the data in the study, and had final responsibility for the manuscript. The study protocol was an investigator-initiated clinical trial. UMN and WUSM investigators performed the clinical trial including data collection, analysis, and interpretation. Altor BioScience performed ALT-803 and cytokine measurements and immunogenicity testing on coded samples. The remaining correlative assays and all statistical analyses were performed by UMN and WUSM. The remaining authors declare no competing financial interests.</p></li><li data-counter=\"26.\"><p>Leidner R, Conlon K, McNeel DG, Wang-Gillam A, Gupta S, Wesolowski R, Chaudhari M, Hassounah N, Lee JB, Ho Lee L, O'Keeffe JA, Lewis N, Pavlakis GN, Thompson JA. First-in-human phase I/Ib study of NIZ985, a recombinant heterodimer of IL-15 and IL-15Ralpha, as a single agent and in combination with spartalizumab in patients with advanced and metastatic solid tumors. J Immunother Cancer 2023;11(10)</p></li><li data-counter=\"27.\"><p>Miller JS, Davis ZB, Helgeson E, Reilly C, Thorkelson A, Anderson J, Lima NS, Jorstad S, Hart GT, Lee JH, Safrit JT, Wong H, Cooley S, Gharu L, Chung H, Soon-Shiong P, Dobrowolski C, Fletcher CV, Karn J, Douek DC, Schacker TW. Safety and virologic impact of the IL-15 superagonist N-803 in people living with HIV: a phase 1 trial. Nat Med. 2022;28(2):392–400.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"28.\"><p>Foltz JA, Hess BT, Bachanova V, Bartlett NL, Berrien-Elliott MM, McClain E, Becker-Hapak M, Foster M, Schappe T, Kahl B, Mehta-Shah N, Cashen AF, Marin ND, McDaniels K, Moreno C, Mosior M, Gao F, Griffith OL, Griffith M, Wagner JA, Epperla N, Rock AD, Lee J, Petti AA, Soon-Shiong P, Fehniger TA. Phase I trial of N-803, an IL15 receptor agonist, with rituximab in patients with indolent non-hodgkin lymphoma. Clin Cancer Res. 2021;27(12):3339–50 (PMC8197753).</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\"29.\"><p>Margolin K, Morishima C, Velcheti V, Miller JS, Lee SM, Silk AW, Holtan SG, Lacroix AM, Fling SP, Kaiser JC, Egan JO, Jones M, Rhode PR, Rock AD, Cheever MA, Wong HC, Ernstoff MS. Phase I trial of ALT-803, a novel recombinant IL15 complex, in patients with advanced solid tumors. Clin Cancer Res. 2018;24(22):5552–61.</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\"30.\"><p>Wrangle JM, Velcheti V, Patel MR, Garrett-Mayer E, Hill EG, Ravenel JG, Miller JS, Farhad M, Anderton K, Lindsey K, Taffaro-Neskey M, Sherman C, Suriano S, Swiderska-Syn M, Sion A, Harris J, Edwards AR, Rytlewski JA, Sanders CM, Yusko EC, Robinson MD, Krieg C, Redmond WL, Egan JO, Rhode PR, Jeng EK, Rock AD, Wong HC, Rubinstein MP. ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol. 2018;19(5):694–704 (PMC6089612).</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\"31.\"><p>Rubinstein MP, Williams C, Mart C, Beall J, MacPherson L, Azar J, Swiderska-Syn M, Manca P, Gibney BC, Robinson MD, Krieg C, Hill EG, Taha SA, Rock AD, Lee JH, Soon-Shiong P, Wrangle J. Phase I trial characterizing the pharmacokinetic profile of N-803, a chimeric IL-15 superagonist. Healthy Volunt J Immunol. 2022;208(6):1362–70.</p><p>Article CAS Google Scholar </p></li><li data-counter=\"32.\"><p>Conlon KC, Lugli E, Welles HC, Rosenberg SA, Fojo AT, Morris JC, Fleisher TA, Dubois SP, Perera LP, Stewart DM, Goldman CK, Bryant BR, Decker JM, Chen J, Worthy TA, Figg WD, Sr., Peer CJ, Sneller MC, Lane HC, Yovandich JL, Creekmore SP, Roederer M, &amp; Waldmann TA. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J Clin Oncol 2015;33(1):74–82. PMC4268254 online at www.jco.org. Author contributions are found at the end of this article</p></li><li data-counter=\"33.\"><p>Zhang M, Wen B, Anton OM, Yao Z, Dubois S, Ju W, Sato N, DiLillo DJ, Bamford RN, Ravetch JV, Waldmann TA. IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by NK cells and macrophages. Proc Natl Acad Sci USA. 2018;115(46):E10915–24 (PMC6243244).</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\"34.\"><p>Hurton LV, Singh H, Najjar AM, Switzer KC, Mi T, Maiti S, Olivares S, Rabinovich B, Huls H, Forget MA, Datar V, Kebriaei P, Lee DA, Champlin RE, Cooper LJ. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc Natl Acad Sci U S A. 2016;113(48):E7788–97 (PMC5137758).</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\"35.\"><p>Shen J, Zou Z, Guo J, Cai Y, Xue D, Liang Y, Wang W, Peng H, Fu YX. An engineered concealed IL-15-R elicits tumor-specific CD8+T cell responses through PD-1-cis delivery. J Exp Med 2022;219(12). PMC9521244 based fusion proteins\" pending. No other disclosures were reported</p></li><li data-counter=\"36.\"><p>Sanchez-Moreno I, Lasarte-Cia A, Martin-Otal C, Casares N, Navarro F, Gorraiz M, Sarrion P, Hervas-Stubbs S, Jordana L, Rodriguez-Madoz JR, San Miguel J, Prosper F, Lasarte JJ, Lozano T. Tethered IL15-IL15Ralpha augments antitumor activity of CD19 CAR-T cells but displays long-term toxicity in an immunocompetent lymphoma mouse model. J Immunother Cancer 2024;12(7). PMC11218034</p></li><li data-counter=\"37.\"><p>Herr HW, Morales A. History of bacillus Calmette-Guerin and bladder cancer: an immunotherapy success story. J Urol. 2008;179(1):53–6.</p><p>Article PubMed Google Scholar </p></li><li data-counter=\"38.\"><p>Hersh EM, Gutterman JU, Mavligit GM. BCG as adjuvant immunotherapy for neoplasia. Annu Rev Med. 1977;28:489–515.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"39\"><p>Luca S, Mihaescu T. History of BCG vaccine. Maedica (Bucur). 2013;8(1):53–8 (PMC3749764).</p><p>PubMed Google Scholar </p></li><li data-counter=\"40\"><p>Kucerova P, Cervinkova M. Spontaneous regression of tumour and the role of microbial infection–possibilities for cancer treatment. Anticancer Drugs. 2016;27(4):269–77 (PMC4777220).</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\"41.\"><p>Nauts HC, Swift WE, Coley BL. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research. Cancer Res. 1946;6:205–16.</p><p>CAS PubMed Google Scholar </p></li><li data-counter=\"42\"><p>Holmgren I. Employment of B. C. G., especially in intravenous injection. Acta Med Scand. 1936;90(S78):350–61.</p><p>Article Google Scholar </p></li><li data-counter=\"43.\"><p>Old LJ, Clarke DA, Benacerraf B. Effect of Bacillus Calmette-Guerin infection on transplanted tumours in the mouse. Nature. 1959;184(Suppl 5):291–2.</p><p>Article Google Scholar </p></li><li data-counter=\"44.\"><p>Zbar B, Bernstein I, Tanaka T, Rapp HJ. Tumor immunity produced by the intradermal inoculation of living tumor cells and living <i>Mycobacterium</i> <i>bovis</i> (strain BCG). Science. 1970;170(3963):1217–8.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"45.\"><p>Bast RC Jr, Zbar B, Borsos T, Rapp HJ. BCG and cancer (first of two parts). N Engl J Med. 1974;290(25):1413–20.</p><p>Article PubMed Google Scholar </p></li><li data-counter=\"46.\"><p>Lemonde P, Clode M. Effect of BCG infection on leukemia and polyoma in mice and hamsters. Proc Soc Exp Biol Med. 1962;111:739–42.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"47.\"><p>Weiss DW, Bonhag RS, Deome KB. Protective activity of fractions of tubercle bacilli against isologous tumours in mice. Nature. 1961;190:889–91.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"48.\"><p>Villasor RP. The clinical use of BCG vaccine in stimulating host resistance to cancer. J Philipp Med Assoc. 1965;41(9):619–32.</p><p>CAS PubMed Google Scholar </p></li><li data-counter=\"49.\"><p>Mathe G, Amiel JL, Schwarzenberg L, Schneider M, Cattan A, Schlumberger JR, Hayat M, De Vassal F. Active immunotherapy for acute lymphoblastic leukaemia. Lancet. 1969;1(7597):697–9.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"50.\"><p>Morton D, Eilber FR, Malmgren RA, Wood WC. Immunological factors which influence response to immunotherapy in malignant melanoma. Surgery 1970;68(1):158–163; discussion 163–154</p></li><li data-counter=\"51.\"><p>Bast RC Jr, Zbar B, Borsos T, Rapp HJ. BCG and cancer. N Engl J Med. 1974;290(26):1458–69.</p><p>Article PubMed Google Scholar </p></li><li data-counter=\"52.\"><p>Morales A, Eidinger D, Bruce AW. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol. 1976;116(2):180–3.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"53.\"><p>Lamm DL, Thor DE, Harris SC, Reyna JA, Stogdill VD, Radwin HM. Bacillus Calmette-Guerin immunotherapy of superficial bladder cancer. J Urol. 1980;124(1):38–40.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"54.\"><p>Jiang S, Redelman-Sidi G. BCG in bladder cancer immunotherapy. Cancers (Basel) 2022;14(13). PMC9264881</p></li><li data-counter=\"55.\"><p>Lamm DL, Blumenstein BA, Crawford ED, Montie JE, Scardino P, Grossman HB, Stanisic TH, Smith JA Jr, Sullivan J, Sarosdy MF, et al. A randomized trial of intravesical doxorubicin and immunotherapy with bacille Calmette-Guerin for transitional-cell carcinoma of the bladder. N Engl J Med. 1991;325(17):1205–9.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"56.\"><p>Brosman SA. Experience with bacillus Calmette-Guerin in patients with superficial bladder carcinoma. J Urol. 1982;128(1):27–30.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\"57.\"><p>Sfakianos JP, Kim PH, Hakimi AA, Herr HW. The effect of restaging transurethral resection on recurrence and progression rates in patients with nonmuscle invasive bladder cancer treated with intravesical bacillus Calmette-Guerin. J Urol. 2014;191(2):341–5 (PMC4157345).</p><p>Article PubMed Google Scholar </p></li><li data-counter=\"58.\"><p>Sylvester RJ, van der Meijden AP, Oosterlinck W, Witjes JA, Bouffioux C, Denis L, Newling DW, Kurth K. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol 2006;49(3):466–465; discussion 475–467</p></li><li data-counter=\"59.\"><p>Gomes-Giacoia E, Miyake M, Goodison S, Sriharan A, Zhang G, You L, Egan JO, Rhode PR, Parker AS, Chai KX, Wong HC, Rosser CJ. Intravesical ALT-803 and BCG treatment reduces tumor burden in a carcinogen induced bladder cancer rat model; a role for cytokine production and NK cell expansion. PLoS One 2014;9(6):e96705. PMC4045574 have declared that no competing interests exist. LY, JOE, PRR and HCW are employees of Altor BioScience Corp. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials</p></li><li data-counter=\"60.\"><p>Furuya H, Chan OTM, Pagano I, Zhu C, Kim N, Peres R, Hokutan K, Alter S, Rhode P, Rosser CJ. Effectiveness of two different dose administration regimens of an IL-15 superagonist complex (ALT-803) in an orthotopic bladder cancer mouse model. J Transl Med. 2019;17(1):29 (PMC6337786).</p><p>Article PubMed PubMed Central Google Scholar </p></li><li data-counter=\"61.\"><p>Chen W, Liu N, Yuan Y, Zhu M, Hu X, Hu W, Wang S, Wang C, Huang B, Xing D. ALT-803 in the treatment of non-muscle-invasive bladder cancer: preclinical and clinical evidence and translational potential. Front Immunol. 2022;13:1040669 (PMC9684637).</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\"62.\"><p>Rosser CJ, Tikhonenkov S, Nix JW, Chan OTM, Ianculescu I, Reddy S, Soon-Shiong P. Safety, tolerability, and long-term clinical outcomes of an IL-15 analogue (N-803) admixed with Bacillus Calmette-Guerin (BCG) for the treatment of bladder cancer. Oncoimmunology. 2021;10(1):1912885.</p><p>Article PubMed PubMed Central Google Scholar </p></li><li data-counter=\"63.\"><p>Chamie K, Chang SS, Kramolowsky E, Gonzalgo ML, Agarwal PK, Bassett JC, Bjurlin M, Cher ML, Clark W, Cowan BE, David R, Goldfischer E, Guru K, Jalkut MW, Kaffenberger SD, Kaminetsky J, Katz AE, Koo AS, Sexton WJ, Tikhonenkov SN, Trabulsi EJ, Trainer AF, Spilman P, Huang M, Bhar P, Taha SA, Sender L, Reddy S, Soon-Shiong P. IL-15 superagonist NAI in BCG-unresponsive non-muscle-invasive bladder cancer. NEJM Evid. 2023;2(1):EVIDo2200167.</p><p>Article Google Scholar </p></li><li data-counter=\"64.\"><p>Kamat AM, Sylvester RJ, Bohle A, Palou J, Lamm DL, Brausi M, Soloway M, Persad R, Buckley R, Colombel M, Witjes JA. Definitions, End Points, and Clinical Trial Designs for Non-Muscle-Invasive Bladder Cancer: Recommendations From the International Bladder Cancer Group. J Clin Oncol 2016;34(16):1935–1944. PMC5321095 online at www.jco.org. Author contributions are found at the end of this article</p></li><li data-counter=\"65.\"><p>Jarow JP, Lerner SP, Kluetz PG, Liu K, Sridhara R, Bajorin D, Chang S, Dinney CP, Groshen S, Morton RA, O’Donnell M, Quale DZ, Schoenberg M, Seigne J, Vikram B. Clinical trial design for the development of new therapies for nonmuscle-invasive bladder cancer: report of a food and drug administration and American urological association public workshop. Urology. 2014;83(2):262–4.</p><p>Article PubMed Google Scholar </p></li><li data-counter=\"66.\"><p>Kamat AM, Colombel M, Sundi D, Lamm D, Boehle A, Brausi M, Buckley R, Persad R, Palou J, Soloway M, Witjes JA. BCG-unresponsive non-muscle-invasive bladder cancer: recommendations from the IBCG. Nat Rev Urol. 2017;14(4):244–55.</p><p>Article PubMed Google Scholar </p></li></ol><p>Download references<svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"><use xlink:href=\"#icon-eds-i-download-medium\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"></use></svg></p><p>We are grateful to Anthony Baker, CMI, and Courtney Fleming, medical illustrators at The Ohio State University Medical Visuals, for creating the two figures.</p><p>The work from MPR and ZL is supported in part by NIH and the Pelotonia Institute for Immuno-Oncology. Support from NIH grants includes MPR (R01CA222817 and R01CA264525), JW (R01CA222817), and ZL (R01CA282501 and P01CA278732).</p><h3>Authors and Affiliations</h3><ol><li><p>Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, 43210, USA</p><p>Zihai Li, Kai He &amp; Mark P. Rubinstein</p></li><li><p>Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA</p><p>Zihai Li, Kai He &amp; Mark P. Rubinstein</p></li><li><p>Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA</p><p>Zihai Li</p></li><li><p>Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA</p><p>John Wrangle</p></li><li><p>Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA</p><p>John Wrangle</p></li><li><p>Immunology Division, Garvan Institute of Medical Research, Darlinghurst, 2010, Australia</p><p>Jonathan Sprent</p></li><li><p>St. Vincent’s Clinical School, University of New South Wales, Sydney, 1466, Australia</p><p>Jonathan Sprent</p></li></ol><span>Authors</span><ol><li><span>Zihai Li</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>John Wrangle</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Kai He</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Jonathan Sprent</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Mark P. Rubinstein</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li></ol><h3>Contributions</h3><p>Z.L. and M.P.R. conceived the idea and organized the writing. M.P.R. drafted the manuscript and received input from all authors. All authors reviewed and approved the final manuscript.</p><h3>Corresponding author</h3><p>Correspondence to Mark P. Rubinstein.</p><h3>Consent for publication</h3>\n<p>Not applicable.</p>\n<h3>Competing interests</h3>\n<p>ZL serves as a member of the scientific advisory board for HanchorBio. The other authors declare no competing interests.</p><h3>Publisher's Note</h3><p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p><p><b>Open Access</b> This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.</p>\n<p>Reprints and permissions</p><img alt=\"Check for updates. Verify currency and authenticity via CrossMark\" height=\"81\" loading=\"lazy\" src=\"\" width=\"57\"/><h3>Cite this article</h3><p>Li, Z., Wrangle, J., He, K. <i>et al.</i> IL-15: from discovery to FDA approval. <i>J Hematol Oncol</i> <b>18</b>, 19 (2025). https://doi.org/10.1186/s13045-025-01664-8</p><p>Download citation<svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"><use xlink:href=\"#icon-eds-i-download-medium\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"></use></svg></p><ul data-test=\"publication-history\"><li><p>Received<span>: </span><span><time datetime=\"2024-09-02\">02 September 2024</time></span></p></li><li><p>Accepted<span>: </span><span><time datetime=\"2025-01-13\">13 January 2025</time></span></p></li><li><p>Published<span>: </span><span><time datetime=\"2025-02-18\">18 February 2025</time></span></p></li><li><p>DOI</abbr><span>: </span><span>https://doi.org/10.1186/s13045-025-01664-8</span></p></li></ul><h3>Share this article</h3><p>Anyone you share the following link with will be able to read this content:</p><button data-track=\"click\" data-track-action=\"get shareable link\" data-track-external=\"\" data-track-label=\"button\" type=\"button\">Get shareable link</button><p>Sorry, a shareable link is not currently available for this article.</p><p data-track=\"click\" data-track-action=\"select share url\" data-track-label=\"button\"></p><button data-track=\"click\" data-track-action=\"copy share url\" data-track-external=\"\" data-track-label=\"button\" type=\"button\">Copy to clipboard</button><p> Provided by the Springer Nature SharedIt content-sharing initiative </p>","PeriodicalId":16023,"journal":{"name":"Journal of Hematology & Oncology","volume":"12 1","pages":""},"PeriodicalIF":29.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IL-15: from discovery to FDA approval\",\"authors\":\"Zihai Li, John Wrangle, Kai He, Jonathan Sprent, Mark P. Rubinstein\",\"doi\":\"10.1186/s13045-025-01664-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In April 2024, the FDA approved the interleukin (IL)−15 superagonist, N-803 (Anktiva, nogapendekin alfa inbakicept-pmln), for the treatment of bladder cancer [1]. This is the first cytokine in over 30 years to receive FDA approval for the treatment of cancer, and the culmination of years of preclinical and clinical studies involving both academic- and industry- driven research.</p><p>To understand the steps leading to this landmark approval, it is helpful to review some key historical events (Fig. 1). Notably, the first cytokines FDA approved for the treatment of cancer were interferon (type 1) (1986, hairy cell leukemia) and IL-2 (1992, renal cell carcinoma) [2]. Within a few years of their initial approvals, both cytokines would also receive other FDA approvals including for the treatment of metastatic melanoma. While both cytokines have broad immune stimulatory activities, IL-2 is unique in that it is also a powerful lymphocyte growth factor [3,4,5,6]. These qualities led to the evaluation and use of IL-2 with many other experimental immunotherapies including adoptive cell therapy. Notably, the adoptive transfer of tumor infiltrating lymphocytes (TIL) in combination with IL-2 first showed efficacy in human patients in the late 1980s [7]. After decades of work, in February 2024, TIL (lifileucel) in combination with IL-2 received FDA approval for the treatment of melanoma [8], which is the first approved adoptive cell therapy using lymphocytes for the treatment of a solid tumor.</p><figure><figcaption><b data-test=\\\"figure-caption-text\\\">Fig. 1</b></figcaption><picture><source srcset=\\\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13045-025-01664-8/MediaObjects/13045_2025_1664_Fig1_HTML.png?as=webp\\\" type=\\\"image/webp\\\"/><img alt=\\\"figure 1\\\" aria-describedby=\\\"Fig1\\\" height=\\\"170\\\" loading=\\\"lazy\\\" src=\\\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13045-025-01664-8/MediaObjects/13045_2025_1664_Fig1_HTML.png\\\" width=\\\"685\\\"/></picture><p>Timeline of key events related to the discovery and development of IL-15 and BCG as therapeutics</p><span>Full size image</span><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"16\\\" role=\\\"img\\\" width=\\\"16\\\"><use xlink:href=\\\"#icon-eds-i-chevron-right-small\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"></use></svg></figure><p>Despite its established efficacy, IL-2 has a short half-life, and at approved doses, IL-2 can induce life threatening toxicities [9]. This side effect profile likely severely curtailed subsequent clinical development. Thus, high dose IL-2 as a monotherapy was FDA approved for renal cell carcinoma and metastatic melanoma, clinical development for other indications halted despite evidence of efficacy in other cancers [10]. Thus began the effort to develop alternatives with a similar mechanism of action.</p><p>The discovery of IL-15 in 1994 was the first step in the development of a promising alternative to IL-2 [4,5,6, 11,12,13]. Like IL-2, IL-15 is a powerful lymphocyte growth factor for CD8<sup>+</sup> T cells and NK cells. Both IL-2 and IL-15 induce similar intracellular signaling through the shared IL-2 receptor (R) βγ subunits. However, while the private IL-2Rα (CD25) subunit improves responsiveness to limiting amounts of IL-2, IL-15 signals independently of IL-2Rα. Because IL-2Rα is expressed at high and constitutive levels on immune suppressive T regulatory cells, an advantage of IL-15 is that it does not expand T regulatory cells. By itself, IL-15 can induce anti-tumor activity in preclinical models [4, 5, 13]. Interestingly, IL-15 can be induced by type I interferon signaling [14, 15], which suggests a mechanism for type 1 interferon-mediated anti-tumor efficacy. Further differentiating IL-15 from IL-2 is the private IL-15Rα subunit. While thought to allow for high affinity cytokine binding, the description of IL-15Rα as a receptor is somewhat of a misnomer as IL-15Rα can transpresent IL-15 either on the cell surface or in soluble format [4, 16]. Building off this knowledge, we and others found that pre-association of soluble IL-15Rα subunit with IL-15 (with or without an Fc) could dramatically improve biological activity and half-life of IL-15 in vitro and in vivo, and these IL-15/IL-15Rα complexes had potent anti-tumor activity [17,18,19,20,21]. Based on this concept (Fig. 2), several companies have developed clinical grade reagents including N-803 (Anktiva), NIZ985, SOT101 (Nanrilkefusp alfa), and XmAb24306 (Efbalropendekin alfa) [22,23,24,25,26].</p><figure><figcaption><b data-test=\\\"figure-caption-text\\\">Fig. 2</b></figcaption><picture><source srcset=\\\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13045-025-01664-8/MediaObjects/13045_2025_1664_Fig2_HTML.png?as=webp\\\" type=\\\"image/webp\\\"/><img alt=\\\"figure 2\\\" aria-describedby=\\\"Fig2\\\" height=\\\"441\\\" loading=\\\"lazy\\\" src=\\\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs13045-025-01664-8/MediaObjects/13045_2025_1664_Fig2_HTML.png\\\" width=\\\"685\\\"/></picture><p>Diagram of N-803 (IL-15/IL-15Rα cytokine complexes) including IL-15, IL-15Rα, and the Fc region from IgG1</p><span>Full size image</span><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"16\\\" role=\\\"img\\\" width=\\\"16\\\"><use xlink:href=\\\"#icon-eds-i-chevron-right-small\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"></use></svg></figure><p>These IL-15 superagonists have now been evaluated in a wide range of clinical trials including patients with cancer and HIV-1 infection [23,24,25,26,27,28,29,30]. Similar to animal studies, human trials have shown IL-15/IL-15Rα complexes have improved half-life and cytokine-induced biological activity on human lymphocytes including CD8<sup>+</sup> T cells and NK cells when compared to free IL-15 [25, 31, 32]. Importantly, at the doses used, this biological activity was obtained without the severe toxicities or need for in-hospital administration associated with high dose IL-2. For the agent in most advanced clinical testing, N-803, single agent activity was shown in patients with hematological malignancies who relapsed after allogeneic hematopoietic cell transplantation [25]. We and others have shown these agents can be administered safely in combination with other immunotherapy agents and with encouraging efficacy signals [26, 28, 30]. Thus, the combination of N-803 and anti-PD-1 mAb (nivolumab) could be given safely to NSCLC patients [30], and there is an ongoing phase III trial (NCT03520686). Taking advantage of the expansion and activation of Fc receptor-expressing immune cells such as NK cells that can mediate enhanced antibody-dependent cellular cytotoxicity, IL-15-based agents show the ability to enhance the efficacy of tumor-targeting antibodies [33]. Clinically, success with this concept has been demonstrated by combination of N-803 with rituximab (anti-CD20 mAb) [28]. Another appealing approach, not yet assessed clinically, is the use of systemic IL-15 agents instead of high dose IL-2 to support adoptively transferred T cells, such as TIL, administered after lymphodepletion. In addition to approaches using early generation IL-15 agents, it is notable that other approaches are in development including the use of fusion proteins combining IL-15 with targeting moieties (such as directing IL-15 to PD-1 expressing lymphocytes) and genetically encoded membrane-bound IL-15 [34, 35]. Expression of membrane-bound IL-15 on adoptively transferred lymphocytes may improve functional capacity and reduce the need for lymphodepleting chemotherapy [36].</p><p>The treatment of non-muscle invasive bladder cancer (NMIBC) involves the use of intravesical bacillus Calmette-Guerin (BCG) to avoid cystectomy [37, 38]. BCG was initially developed as a vaccine for tuberculosis, and since initial human testing in 1921, has been the most widely used vaccine worldwide [37,38,39]. Interest in using BCG for cancer therapy resulted from work by William Coley and others showing that bacterial agents may trigger anti-tumor immunity [40, 41], and BCG use in cancer patients was reported as early as 1936 [42]. Direct evidence in support of the use of BCG to induce anti-tumor immunity was supported by animal studies conducted by Lloyd Old, Burton Zbar, and others [43,44,45,46,47]. Evidence of BCG-mediated anti-tumor activity in humans was reported as early as 1965 in a mixed patient population [48]. Soon thereafter, evidence of BCG-mediated anti-tumor activity was reported in acute lymphoblastic leukemia [49], metastatic melanoma [50], and other cancers [37, 38, 51]. While our interpretation of the use of BCG as a cancer immunotherapy might be altered with today’s modern understanding of immunology, the practical clinical results of BCG therapy in bladder cancer would prove most impactful. Thus, in 1976 Alvaro Morales reported favorable responses in 9 patients with superficial bladder cancer treated as part of the first human trial using intravesical BCG [52]. This work was followed by randomized trials confirming efficacy [53,54,55,56], leading the FDA to approve BCG for NMIBC in 1990 [37].</p><p>While intravesical BCG can lead to durable responses in NMIBC, up to 40% of patients have disease recurrence at which time patients are thought to be unresponsive to additional BCG administration [54, 57, 58]. With the goal of improving BCG-mediated anti-tumor immunity, preclinical bladder cancer studies in rats demonstrated the combination of IL-15 and BCG delivery by intravesical instillation was safe and improved anti-tumor immunity [59,60,61]. The mechanism of action in these preclinical studies was not fully established, but responses were associated with expansion of NK cells and inflammatory cytokines. Given the encouraging preclinical studies, the combination of intravesical N-803 and BCG was evaluated in NMIBC patients, and in a phase I trial, encouraging safety, tolerability, and long-term outcomes were observed [62]. Intravesical N-803 given with BCG was then evaluated in a single-arm, multicenter trial of BCG-unresponsive, high-risk NMIBC patients with carcinoma in situ with or without papillary tumors [63] (NCT0302285, QUILT-3.032). In data reported by the FDA, 62% of the 77 patients enrolled had a complete response, with 58% of patients sustaining this complete response for 12 months. This response rate far exceeded guidance of 30% complete response at 1 year set by FDA experts and the International Bladder Cancer Group [64,65,66]. As a result, in April 2024 the FDA approved N-803 with BCG for this patient population [1], which represents the first FDA approval of any IL-15 based therapy.</p><p>While this FDA approval represents a promising step for patients, critical questions remain including the need for in-depth studies to establish the mechanism of action of the combination of N-803 and BCG. The latter will be helpful for the design of future therapies for bladder cancer patients. More broadly, this FDA approval is noteworthy as it represents the first of a new era of approvals for cytokines in the treatment of cancer. For IL-15 superagonists, future approvals might be for recombinant protein or genetically encoded constructs, however, it may also be for an IL-15-concept not yet envisioned.</p><p>No datasets were generated or analysed during the current study.</p><ol data-track-component=\\\"outbound reference\\\" data-track-context=\\\"references section\\\"><li data-counter=\\\"1.\\\"><p>FDA. FDA approves nogapendekin alfa inbakicept-pmln for BCG-unresponsive non-muscle invasive bladder cancer. 2024</p></li><li data-counter=\\\"2.\\\"><p>Waldmann TA. Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol. 2018;10(12):a028472.</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\\\"3.\\\"><p>Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol. 2014;192(12):5451–8 (PMC6293462).</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"4.\\\"><p>Wrangle JM, Patterson A, Johnson CB, Neitzke DJ, Mehrotra S, Denlinger CE, Paulos CM, Li Z, Cole DJ, Rubinstein MP. IL-2 and beyond in cancer immunotherapy. J Interferon Cytokine Res. 2018;38(2):45–68 (PMC5815463).</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\\\"5.\\\"><p>Waldmann TA. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol. 2006;6(8):595–601.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"6.\\\"><p>Leonard WJ, Lin JX, O’Shea JJ. The gamma(c) family of cytokines: basic biology to therapeutic ramifications. Immunity. 2019;50(4):832–50.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"7.\\\"><p>Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 1988;319(25):1676–80.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"8.\\\"><p>Julve M, Lythgoe MP, Larkin J, Furness AJS. Lifileucel: the first cellular therapy approved for solid tumours. Trends Cancer. 2024;10(6):475–7.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"9.\\\"><p>Marabondo S, Kaufman HL. High-dose interleukin-2 (IL-2) for the treatment of melanoma: safety considerations and future directions. Expert Opin Drug Saf. 2017;16(12):1347–57.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"10.\\\"><p>Tester WJ, Kim KM, Krigel RL, Bonomi PD, Glick JH, Asbury RF, Kirkwood JM, Blum RH, Schiller JH. A randomized phase II study of interleukin-2 with and without beta-interferon for patients with advanced non-small cell lung cancer: an eastern cooperative oncology group study (PZ586). Lung Cancer. 1999;25(3):199–206.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"11.\\\"><p>Grabstein KH, Eisenman J, Shanebeck K, Rauch C, Srinivasan S, Fung V, Beers C, Richardson J, Schoenborn MA, Ahdieh M, et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science. 1994;264(5161):965–8.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"12.\\\"><p>Burton JD, Bamford RN, Peters C, Grant AJ, Kurys G, Goldman CK, Brennan J, Roessler E, Waldmann TA. A lymphokine, provisionally designated interleukin T and produced by a human adult T-cell leukemia line, stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc Natl Acad Sci USA. 1994;91(11):4935–9 (PMC43904).</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\\\"13.\\\"><p>Fehniger TA, Caligiuri MA. Interleukin 15: biology and relevance to human disease. Blood. 2001;97(1):14–32.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"14.\\\"><p>Zhang X, Sun S, Hwang I, Tough DF, Sprent J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity. 1998;8(5):591–9.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"15.\\\"><p>Lodolce JP, Burkett PR, Boone DL, Chien M, Ma A. T cell-independent interleukin 15Ralpha signals are required for bystander proliferation. J Exp Med. 2001;194(8):1187–94 (PMC2193508).</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\\\"16\\\"><p>Castillo EF, Schluns KS. Regulating the immune system via IL-15 transpresentation. Cytokine. 2012;59(3):479–90 (PMC3422378).</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\\\"17.\\\"><p>Dubois S, Patel HJ, Zhang M, Waldmann TA, Muller JR. Preassociation of IL-15 with IL-15R alpha-IgG1-Fc enhances its activity on proliferation of NK and CD8+/CD44high T cells and its antitumor action. J Immunol. 2008;180(4):2099–106.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"18.\\\"><p>Bergamaschi C, Rosati M, Jalah R, Valentin A, Kulkarni V, Alicea C, Zhang GM, Patel V, Felber BK, Pavlakis GN. Intracellular interaction of interleukin-15 with its receptor alpha during production leads to mutual stabilization and increased bioactivity. J Biol Chem. 2008;283(7):4189–99.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"19\\\"><p>Stoklasek TA, Schluns KS, Lefrancois L. Combined IL-15/IL-15Ralpha immunotherapy maximizes IL-15 activity in vivo. J Immunol. 2006;177(9):6072–80 (PMC2847275).</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"20.\\\"><p>Rubinstein MP, Kovar M, Purton JF, Cho JH, Boyman O, Surh CD, Sprent J. Converting IL-15 to a superagonist by binding to soluble IL-15Ralpha. Proc Natl Acad Sci U S A. 2006;103(24):9166–71 (PMC1482584).</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\\\"21\\\"><p>Mortier E, Quemener A, Vusio P, Lorenzen I, Boublik Y, Grotzinger J, Plet A, Jacques Y. Soluble interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective and potent agonist of IL-15 action through IL-15R beta/gamma. Hyperagonist IL-15 x IL-15R alpha fusion proteins. J Biol Chem. 2006;281(3):1612–9.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"22.\\\"><p>Han KP, Zhu X, Liu B, Jeng E, Kong L, Yovandich JL, Vyas VV, Marcus WD, Chavaillaz PA, Romero CA, Rhode PR, Wong HC. IL-15:IL-15 receptor alpha superagonist complex: high-level co-expression in recombinant mammalian cells, purification and characterization. Cytokine. 2011;56(3):804–10 (PMC3221918).</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\\\"23.\\\"><p>Lu D, Yadav R, Holder P, Chiang E, Sanjabi S, Poon V, Bernett M, Varma R, Liu K, Leung I, Bogaert L, Desjarlais J, Shivva V, Hosseini I, Ramanujan S. Complex PK-PD of an engineered IL-15/IL-15Ralpha-Fc fusion protein in cynomolgus monkeys: QSP modeling of lymphocyte dynamics. Eur J Pharm Sci. 2023;186:106450.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"24.\\\"><p>Danek P, Simonova E, Podzimkova N, Bechard D, Sachse R, Kiemle-Kallee J, Moebius U, Spisek R, Adkins I, Steegmaier M, Jelinkova LP. 713 Nanrilkefusp alfa, a high-affinity IL-15Rβγ agonist, promotes an innate and adaptive anti-tumour inflammatory environment as single agent or combined with anti-PD-1 in patients with advanced cancers. J Immunother Cancer. 2023;11:A808–A808.</p><p>Google Scholar </p></li><li data-counter=\\\"25.\\\"><p>Romee R, Cooley S, Berrien-Elliott MM, Westervelt P, Verneris MR, Wagner JE, Weisdorf DJ, Blazar BR, Ustun C, DeFor TE, Vivek S, Peck L, DiPersio JF, Cashen AF, Kyllo R, Musiek A, Schaffer A, Anadkat MJ, Rosman I, Miller D, Egan JO, Jeng EK, Rock A, Wong HC, Fehniger TA, &amp; Miller JS. First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. Blood 2018;131(23): 2515–2527. PMC5992862 research support from Altor BioScience, a Nantworks company, but have no financial benefit from the outcome of this trial. J.O.E., E.K.J., A.R., and H.C.W. are employees of Altor BioScience and declare direct financial conflicts. To manage these conflicts, UMN and WUSM investigators led this trial, were sponsors of the IND, managed all the data in the study, and had final responsibility for the manuscript. The study protocol was an investigator-initiated clinical trial. UMN and WUSM investigators performed the clinical trial including data collection, analysis, and interpretation. Altor BioScience performed ALT-803 and cytokine measurements and immunogenicity testing on coded samples. The remaining correlative assays and all statistical analyses were performed by UMN and WUSM. The remaining authors declare no competing financial interests.</p></li><li data-counter=\\\"26.\\\"><p>Leidner R, Conlon K, McNeel DG, Wang-Gillam A, Gupta S, Wesolowski R, Chaudhari M, Hassounah N, Lee JB, Ho Lee L, O'Keeffe JA, Lewis N, Pavlakis GN, Thompson JA. First-in-human phase I/Ib study of NIZ985, a recombinant heterodimer of IL-15 and IL-15Ralpha, as a single agent and in combination with spartalizumab in patients with advanced and metastatic solid tumors. J Immunother Cancer 2023;11(10)</p></li><li data-counter=\\\"27.\\\"><p>Miller JS, Davis ZB, Helgeson E, Reilly C, Thorkelson A, Anderson J, Lima NS, Jorstad S, Hart GT, Lee JH, Safrit JT, Wong H, Cooley S, Gharu L, Chung H, Soon-Shiong P, Dobrowolski C, Fletcher CV, Karn J, Douek DC, Schacker TW. Safety and virologic impact of the IL-15 superagonist N-803 in people living with HIV: a phase 1 trial. Nat Med. 2022;28(2):392–400.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"28.\\\"><p>Foltz JA, Hess BT, Bachanova V, Bartlett NL, Berrien-Elliott MM, McClain E, Becker-Hapak M, Foster M, Schappe T, Kahl B, Mehta-Shah N, Cashen AF, Marin ND, McDaniels K, Moreno C, Mosior M, Gao F, Griffith OL, Griffith M, Wagner JA, Epperla N, Rock AD, Lee J, Petti AA, Soon-Shiong P, Fehniger TA. Phase I trial of N-803, an IL15 receptor agonist, with rituximab in patients with indolent non-hodgkin lymphoma. Clin Cancer Res. 2021;27(12):3339–50 (PMC8197753).</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\\\"29.\\\"><p>Margolin K, Morishima C, Velcheti V, Miller JS, Lee SM, Silk AW, Holtan SG, Lacroix AM, Fling SP, Kaiser JC, Egan JO, Jones M, Rhode PR, Rock AD, Cheever MA, Wong HC, Ernstoff MS. Phase I trial of ALT-803, a novel recombinant IL15 complex, in patients with advanced solid tumors. Clin Cancer Res. 2018;24(22):5552–61.</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\\\"30.\\\"><p>Wrangle JM, Velcheti V, Patel MR, Garrett-Mayer E, Hill EG, Ravenel JG, Miller JS, Farhad M, Anderton K, Lindsey K, Taffaro-Neskey M, Sherman C, Suriano S, Swiderska-Syn M, Sion A, Harris J, Edwards AR, Rytlewski JA, Sanders CM, Yusko EC, Robinson MD, Krieg C, Redmond WL, Egan JO, Rhode PR, Jeng EK, Rock AD, Wong HC, Rubinstein MP. ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol. 2018;19(5):694–704 (PMC6089612).</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\\\"31.\\\"><p>Rubinstein MP, Williams C, Mart C, Beall J, MacPherson L, Azar J, Swiderska-Syn M, Manca P, Gibney BC, Robinson MD, Krieg C, Hill EG, Taha SA, Rock AD, Lee JH, Soon-Shiong P, Wrangle J. Phase I trial characterizing the pharmacokinetic profile of N-803, a chimeric IL-15 superagonist. Healthy Volunt J Immunol. 2022;208(6):1362–70.</p><p>Article CAS Google Scholar </p></li><li data-counter=\\\"32.\\\"><p>Conlon KC, Lugli E, Welles HC, Rosenberg SA, Fojo AT, Morris JC, Fleisher TA, Dubois SP, Perera LP, Stewart DM, Goldman CK, Bryant BR, Decker JM, Chen J, Worthy TA, Figg WD, Sr., Peer CJ, Sneller MC, Lane HC, Yovandich JL, Creekmore SP, Roederer M, &amp; Waldmann TA. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J Clin Oncol 2015;33(1):74–82. PMC4268254 online at www.jco.org. Author contributions are found at the end of this article</p></li><li data-counter=\\\"33.\\\"><p>Zhang M, Wen B, Anton OM, Yao Z, Dubois S, Ju W, Sato N, DiLillo DJ, Bamford RN, Ravetch JV, Waldmann TA. IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by NK cells and macrophages. Proc Natl Acad Sci USA. 2018;115(46):E10915–24 (PMC6243244).</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\\\"34.\\\"><p>Hurton LV, Singh H, Najjar AM, Switzer KC, Mi T, Maiti S, Olivares S, Rabinovich B, Huls H, Forget MA, Datar V, Kebriaei P, Lee DA, Champlin RE, Cooper LJ. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc Natl Acad Sci U S A. 2016;113(48):E7788–97 (PMC5137758).</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\\\"35.\\\"><p>Shen J, Zou Z, Guo J, Cai Y, Xue D, Liang Y, Wang W, Peng H, Fu YX. An engineered concealed IL-15-R elicits tumor-specific CD8+T cell responses through PD-1-cis delivery. J Exp Med 2022;219(12). PMC9521244 based fusion proteins\\\" pending. No other disclosures were reported</p></li><li data-counter=\\\"36.\\\"><p>Sanchez-Moreno I, Lasarte-Cia A, Martin-Otal C, Casares N, Navarro F, Gorraiz M, Sarrion P, Hervas-Stubbs S, Jordana L, Rodriguez-Madoz JR, San Miguel J, Prosper F, Lasarte JJ, Lozano T. Tethered IL15-IL15Ralpha augments antitumor activity of CD19 CAR-T cells but displays long-term toxicity in an immunocompetent lymphoma mouse model. J Immunother Cancer 2024;12(7). PMC11218034</p></li><li data-counter=\\\"37.\\\"><p>Herr HW, Morales A. History of bacillus Calmette-Guerin and bladder cancer: an immunotherapy success story. J Urol. 2008;179(1):53–6.</p><p>Article PubMed Google Scholar </p></li><li data-counter=\\\"38.\\\"><p>Hersh EM, Gutterman JU, Mavligit GM. BCG as adjuvant immunotherapy for neoplasia. Annu Rev Med. 1977;28:489–515.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"39\\\"><p>Luca S, Mihaescu T. History of BCG vaccine. Maedica (Bucur). 2013;8(1):53–8 (PMC3749764).</p><p>PubMed Google Scholar </p></li><li data-counter=\\\"40\\\"><p>Kucerova P, Cervinkova M. Spontaneous regression of tumour and the role of microbial infection–possibilities for cancer treatment. Anticancer Drugs. 2016;27(4):269–77 (PMC4777220).</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\\\"41.\\\"><p>Nauts HC, Swift WE, Coley BL. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research. Cancer Res. 1946;6:205–16.</p><p>CAS PubMed Google Scholar </p></li><li data-counter=\\\"42\\\"><p>Holmgren I. Employment of B. C. G., especially in intravenous injection. Acta Med Scand. 1936;90(S78):350–61.</p><p>Article Google Scholar </p></li><li data-counter=\\\"43.\\\"><p>Old LJ, Clarke DA, Benacerraf B. Effect of Bacillus Calmette-Guerin infection on transplanted tumours in the mouse. Nature. 1959;184(Suppl 5):291–2.</p><p>Article Google Scholar </p></li><li data-counter=\\\"44.\\\"><p>Zbar B, Bernstein I, Tanaka T, Rapp HJ. Tumor immunity produced by the intradermal inoculation of living tumor cells and living <i>Mycobacterium</i> <i>bovis</i> (strain BCG). Science. 1970;170(3963):1217–8.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"45.\\\"><p>Bast RC Jr, Zbar B, Borsos T, Rapp HJ. BCG and cancer (first of two parts). N Engl J Med. 1974;290(25):1413–20.</p><p>Article PubMed Google Scholar </p></li><li data-counter=\\\"46.\\\"><p>Lemonde P, Clode M. Effect of BCG infection on leukemia and polyoma in mice and hamsters. Proc Soc Exp Biol Med. 1962;111:739–42.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"47.\\\"><p>Weiss DW, Bonhag RS, Deome KB. Protective activity of fractions of tubercle bacilli against isologous tumours in mice. Nature. 1961;190:889–91.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"48.\\\"><p>Villasor RP. The clinical use of BCG vaccine in stimulating host resistance to cancer. J Philipp Med Assoc. 1965;41(9):619–32.</p><p>CAS PubMed Google Scholar </p></li><li data-counter=\\\"49.\\\"><p>Mathe G, Amiel JL, Schwarzenberg L, Schneider M, Cattan A, Schlumberger JR, Hayat M, De Vassal F. Active immunotherapy for acute lymphoblastic leukaemia. Lancet. 1969;1(7597):697–9.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"50.\\\"><p>Morton D, Eilber FR, Malmgren RA, Wood WC. Immunological factors which influence response to immunotherapy in malignant melanoma. Surgery 1970;68(1):158–163; discussion 163–154</p></li><li data-counter=\\\"51.\\\"><p>Bast RC Jr, Zbar B, Borsos T, Rapp HJ. BCG and cancer. N Engl J Med. 1974;290(26):1458–69.</p><p>Article PubMed Google Scholar </p></li><li data-counter=\\\"52.\\\"><p>Morales A, Eidinger D, Bruce AW. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol. 1976;116(2):180–3.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"53.\\\"><p>Lamm DL, Thor DE, Harris SC, Reyna JA, Stogdill VD, Radwin HM. Bacillus Calmette-Guerin immunotherapy of superficial bladder cancer. J Urol. 1980;124(1):38–40.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"54.\\\"><p>Jiang S, Redelman-Sidi G. BCG in bladder cancer immunotherapy. Cancers (Basel) 2022;14(13). PMC9264881</p></li><li data-counter=\\\"55.\\\"><p>Lamm DL, Blumenstein BA, Crawford ED, Montie JE, Scardino P, Grossman HB, Stanisic TH, Smith JA Jr, Sullivan J, Sarosdy MF, et al. A randomized trial of intravesical doxorubicin and immunotherapy with bacille Calmette-Guerin for transitional-cell carcinoma of the bladder. N Engl J Med. 1991;325(17):1205–9.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"56.\\\"><p>Brosman SA. Experience with bacillus Calmette-Guerin in patients with superficial bladder carcinoma. J Urol. 1982;128(1):27–30.</p><p>Article CAS PubMed Google Scholar </p></li><li data-counter=\\\"57.\\\"><p>Sfakianos JP, Kim PH, Hakimi AA, Herr HW. The effect of restaging transurethral resection on recurrence and progression rates in patients with nonmuscle invasive bladder cancer treated with intravesical bacillus Calmette-Guerin. J Urol. 2014;191(2):341–5 (PMC4157345).</p><p>Article PubMed Google Scholar </p></li><li data-counter=\\\"58.\\\"><p>Sylvester RJ, van der Meijden AP, Oosterlinck W, Witjes JA, Bouffioux C, Denis L, Newling DW, Kurth K. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol 2006;49(3):466–465; discussion 475–467</p></li><li data-counter=\\\"59.\\\"><p>Gomes-Giacoia E, Miyake M, Goodison S, Sriharan A, Zhang G, You L, Egan JO, Rhode PR, Parker AS, Chai KX, Wong HC, Rosser CJ. Intravesical ALT-803 and BCG treatment reduces tumor burden in a carcinogen induced bladder cancer rat model; a role for cytokine production and NK cell expansion. PLoS One 2014;9(6):e96705. PMC4045574 have declared that no competing interests exist. LY, JOE, PRR and HCW are employees of Altor BioScience Corp. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials</p></li><li data-counter=\\\"60.\\\"><p>Furuya H, Chan OTM, Pagano I, Zhu C, Kim N, Peres R, Hokutan K, Alter S, Rhode P, Rosser CJ. Effectiveness of two different dose administration regimens of an IL-15 superagonist complex (ALT-803) in an orthotopic bladder cancer mouse model. J Transl Med. 2019;17(1):29 (PMC6337786).</p><p>Article PubMed PubMed Central Google Scholar </p></li><li data-counter=\\\"61.\\\"><p>Chen W, Liu N, Yuan Y, Zhu M, Hu X, Hu W, Wang S, Wang C, Huang B, Xing D. ALT-803 in the treatment of non-muscle-invasive bladder cancer: preclinical and clinical evidence and translational potential. Front Immunol. 2022;13:1040669 (PMC9684637).</p><p>Article CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\\\"62.\\\"><p>Rosser CJ, Tikhonenkov S, Nix JW, Chan OTM, Ianculescu I, Reddy S, Soon-Shiong P. Safety, tolerability, and long-term clinical outcomes of an IL-15 analogue (N-803) admixed with Bacillus Calmette-Guerin (BCG) for the treatment of bladder cancer. Oncoimmunology. 2021;10(1):1912885.</p><p>Article PubMed PubMed Central Google Scholar </p></li><li data-counter=\\\"63.\\\"><p>Chamie K, Chang SS, Kramolowsky E, Gonzalgo ML, Agarwal PK, Bassett JC, Bjurlin M, Cher ML, Clark W, Cowan BE, David R, Goldfischer E, Guru K, Jalkut MW, Kaffenberger SD, Kaminetsky J, Katz AE, Koo AS, Sexton WJ, Tikhonenkov SN, Trabulsi EJ, Trainer AF, Spilman P, Huang M, Bhar P, Taha SA, Sender L, Reddy S, Soon-Shiong P. IL-15 superagonist NAI in BCG-unresponsive non-muscle-invasive bladder cancer. NEJM Evid. 2023;2(1):EVIDo2200167.</p><p>Article Google Scholar </p></li><li data-counter=\\\"64.\\\"><p>Kamat AM, Sylvester RJ, Bohle A, Palou J, Lamm DL, Brausi M, Soloway M, Persad R, Buckley R, Colombel M, Witjes JA. Definitions, End Points, and Clinical Trial Designs for Non-Muscle-Invasive Bladder Cancer: Recommendations From the International Bladder Cancer Group. J Clin Oncol 2016;34(16):1935–1944. PMC5321095 online at www.jco.org. Author contributions are found at the end of this article</p></li><li data-counter=\\\"65.\\\"><p>Jarow JP, Lerner SP, Kluetz PG, Liu K, Sridhara R, Bajorin D, Chang S, Dinney CP, Groshen S, Morton RA, O’Donnell M, Quale DZ, Schoenberg M, Seigne J, Vikram B. Clinical trial design for the development of new therapies for nonmuscle-invasive bladder cancer: report of a food and drug administration and American urological association public workshop. Urology. 2014;83(2):262–4.</p><p>Article PubMed Google Scholar </p></li><li data-counter=\\\"66.\\\"><p>Kamat AM, Colombel M, Sundi D, Lamm D, Boehle A, Brausi M, Buckley R, Persad R, Palou J, Soloway M, Witjes JA. BCG-unresponsive non-muscle-invasive bladder cancer: recommendations from the IBCG. Nat Rev Urol. 2017;14(4):244–55.</p><p>Article PubMed Google Scholar </p></li></ol><p>Download references<svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"16\\\" role=\\\"img\\\" width=\\\"16\\\"><use xlink:href=\\\"#icon-eds-i-download-medium\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"></use></svg></p><p>We are grateful to Anthony Baker, CMI, and Courtney Fleming, medical illustrators at The Ohio State University Medical Visuals, for creating the two figures.</p><p>The work from MPR and ZL is supported in part by NIH and the Pelotonia Institute for Immuno-Oncology. Support from NIH grants includes MPR (R01CA222817 and R01CA264525), JW (R01CA222817), and ZL (R01CA282501 and P01CA278732).</p><h3>Authors and Affiliations</h3><ol><li><p>Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, 43210, USA</p><p>Zihai Li, Kai He &amp; Mark P. Rubinstein</p></li><li><p>Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA</p><p>Zihai Li, Kai He &amp; Mark P. Rubinstein</p></li><li><p>Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA</p><p>Zihai Li</p></li><li><p>Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA</p><p>John Wrangle</p></li><li><p>Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA</p><p>John Wrangle</p></li><li><p>Immunology Division, Garvan Institute of Medical Research, Darlinghurst, 2010, Australia</p><p>Jonathan Sprent</p></li><li><p>St. Vincent’s Clinical School, University of New South Wales, Sydney, 1466, Australia</p><p>Jonathan Sprent</p></li></ol><span>Authors</span><ol><li><span>Zihai Li</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>John Wrangle</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Kai He</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Jonathan Sprent</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Mark P. Rubinstein</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li></ol><h3>Contributions</h3><p>Z.L. and M.P.R. conceived the idea and organized the writing. M.P.R. drafted the manuscript and received input from all authors. All authors reviewed and approved the final manuscript.</p><h3>Corresponding author</h3><p>Correspondence to Mark P. Rubinstein.</p><h3>Consent for publication</h3>\\n<p>Not applicable.</p>\\n<h3>Competing interests</h3>\\n<p>ZL serves as a member of the scientific advisory board for HanchorBio. The other authors declare no competing interests.</p><h3>Publisher's Note</h3><p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p><p><b>Open Access</b> This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.</p>\\n<p>Reprints and permissions</p><img alt=\\\"Check for updates. Verify currency and authenticity via CrossMark\\\" height=\\\"81\\\" loading=\\\"lazy\\\" src=\\\"\\\" width=\\\"57\\\"/><h3>Cite this article</h3><p>Li, Z., Wrangle, J., He, K. <i>et al.</i> IL-15: from discovery to FDA approval. <i>J Hematol Oncol</i> <b>18</b>, 19 (2025). https://doi.org/10.1186/s13045-025-01664-8</p><p>Download citation<svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"16\\\" role=\\\"img\\\" width=\\\"16\\\"><use xlink:href=\\\"#icon-eds-i-download-medium\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"></use></svg></p><ul data-test=\\\"publication-history\\\"><li><p>Received<span>: </span><span><time datetime=\\\"2024-09-02\\\">02 September 2024</time></span></p></li><li><p>Accepted<span>: </span><span><time datetime=\\\"2025-01-13\\\">13 January 2025</time></span></p></li><li><p>Published<span>: </span><span><time datetime=\\\"2025-02-18\\\">18 February 2025</time></span></p></li><li><p>DOI</abbr><span>: </span><span>https://doi.org/10.1186/s13045-025-01664-8</span></p></li></ul><h3>Share this article</h3><p>Anyone you share the following link with will be able to read this content:</p><button data-track=\\\"click\\\" data-track-action=\\\"get shareable link\\\" data-track-external=\\\"\\\" data-track-label=\\\"button\\\" type=\\\"button\\\">Get shareable link</button><p>Sorry, a shareable link is not currently available for this article.</p><p data-track=\\\"click\\\" data-track-action=\\\"select share url\\\" data-track-label=\\\"button\\\"></p><button data-track=\\\"click\\\" data-track-action=\\\"copy share url\\\" data-track-external=\\\"\\\" data-track-label=\\\"button\\\" type=\\\"button\\\">Copy to clipboard</button><p> Provided by the Springer Nature SharedIt content-sharing initiative </p>\",\"PeriodicalId\":16023,\"journal\":{\"name\":\"Journal of Hematology & Oncology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":29.5000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hematology & Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13045-025-01664-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13045-025-01664-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

2024年4月,FDA批准了白细胞介素(IL) - 15超级激动剂N-803 (Anktiva, nogapendekin alfa inbakicept-pmln)用于治疗膀胱癌。这是30多年来第一个获得FDA批准用于癌症治疗的细胞因子,也是多年来包括学术和行业驱动研究在内的临床前和临床研究的高潮。为了理解导致这一里程碑式批准的步骤,回顾一些关键的历史事件是有帮助的(图1)。值得注意的是,FDA批准用于治疗癌症的第一批细胞因子是干扰素(1型)(1986年,毛细胞白血病)和IL-2(1992年,肾细胞癌)[2]。在最初获得批准的几年内,这两种细胞因子也将获得FDA的其他批准,包括用于治疗转移性黑色素瘤。虽然这两种细胞因子都具有广泛的免疫刺激活性,但IL-2的独特之处在于它也是一种强大的淋巴细胞生长因子[3,4,5,6]。这些特性导致了IL-2与许多其他实验性免疫疗法(包括过继细胞疗法)的评估和使用。值得注意的是,肿瘤浸润淋巴细胞(TIL)的过继性转移联合IL-2在20世纪80年代末首次在人类患者中显示出疗效。经过几十年的努力,2024年2月,TIL (lifileucel)联合IL-2治疗黑色素瘤[8]获得FDA批准,这是第一个批准使用淋巴细胞治疗实体瘤的过继细胞疗法。1发现和开发IL-15和卡介苗作为治疗药物的关键事件时间表全尺寸图像尽管IL-2具有既定的疗效,但其半衰期较短,并且在批准的剂量下,IL-2可诱导危及生命的毒性[9]。这种副作用可能严重限制了随后的临床发展。因此,高剂量IL-2作为单一疗法被FDA批准用于肾细胞癌和转移性黑色素瘤,尽管有证据表明其对其他癌症有效,但用于其他适应症的临床开发却停止了。因此,开始努力开发具有类似作用机制的替代品。1994年发现IL-15是开发IL-2替代品的第一步[4,5,6,11,12,13]。与IL-2一样,IL-15是CD8+ T细胞和NK细胞的强大淋巴细胞生长因子。IL-2和IL-15通过共享的IL-2受体(R) βγ亚基诱导相似的细胞内信号传导。然而,虽然私有IL-2Rα (CD25)亚基提高了对有限量IL-2的响应性,但IL-15信号独立于IL-2Rα。由于IL-2Rα在免疫抑制性T调节性细胞上的高表达和组成性水平,IL-15的一个优势是它不会扩增T调节性细胞。IL-15本身可以在临床前模型中诱导抗肿瘤活性[4,5,13]。有趣的是,IL-15可以被I型干扰素信号诱导[14,15],这提示了1型干扰素介导的抗肿瘤作用机制。进一步区分IL-15和IL-2的是IL-15Rα亚基。虽然认为IL-15Rα允许高亲和力的细胞因子结合,但将IL-15Rα描述为受体有点用词不当,因为IL-15Rα可以在细胞表面或以可溶性形式呈现IL-15[4,16]。在此基础上,我们和其他人发现可溶性IL-15Rα亚基与IL-15(含或不含Fc)的预结合可以显著提高IL-15在体外和体内的生物活性和半衰期,并且这些IL-15/IL-15Rα复合物具有强大的抗肿瘤活性[17,18,19,20,21]。基于这一概念(图2),几家公司开发了临床级试剂,包括N-803 (Anktiva)、NIZ985、SOT101 (Nanrilkefusp α)和XmAb24306 (Efbalropendekin α)[22,23,24,25,26]。2来自igg1的N-803 (IL-15/IL-15Rα细胞因子复合物)包括IL-15、IL-15Rα和Fc区域示意图这些IL-15超级激动剂现已在广泛的临床试验中进行评估,包括癌症和HIV-1感染患者[23,24,25,26,27,28,29,30]。与动物研究类似,人体试验表明,与游离IL-15相比,IL-15/IL-15Rα复合物在人淋巴细胞(包括CD8+ T细胞和NK细胞)上的半衰期和细胞因子诱导的生物活性都有所改善[25,31,32]。重要的是,在使用的剂量下,这种生物活性没有与高剂量IL-2相关的严重毒性或需要住院给药。在最先进的临床试验中,N-803在异基因造血细胞移植后复发的血液系统恶性肿瘤患者中显示出单药活性。我们和其他人已经证明,这些药物可以安全地与其他免疫疗法药物联合使用,并且具有令人鼓舞的疗效信号[26,28,30]。 因此,N-803联合抗pd -1单抗(nivolumab)可以安全地给予NSCLC患者[30],并且正在进行III期试验(NCT03520686)。利用表达Fc受体的免疫细胞(如NK细胞)的扩增和激活,可以介导增强的抗体依赖性细胞毒性,基于il -15的药物显示出增强肿瘤靶向抗体[33]功效的能力。临床上,N-803与利妥昔单抗(抗cd20单抗)[28]的联合治疗已经证明了这一概念的成功。另一种吸引人的方法,尚未进行临床评估,是使用全身性IL-15药物代替高剂量IL-2来支持过继转移的T细胞,如淋巴细胞清除后给予TIL。除了使用早期代IL-15药物的方法外,值得注意的是,其他方法正在开发中,包括使用将IL-15与靶向部分结合的融合蛋白(例如将IL-15引导到表达PD-1的淋巴细胞)和遗传编码的膜结合IL-15[34,35]。膜结合IL-15在过继转移淋巴细胞上的表达可能改善功能能力,减少对淋巴细胞消耗化疗的需要。非肌性浸润性膀胱癌(NMIBC)的治疗包括使用膀胱内卡介苗(BCG)以避免膀胱切除术[37,38]。卡介苗最初是作为结核病疫苗开发的,自1921年首次人体试验以来,卡介苗一直是世界上使用最广泛的疫苗[37,38,39]。William Coley等人的研究表明,细菌制剂可能引发抗肿瘤免疫[40,41],早在1936年,就有报道称卡介苗用于癌症患者。Lloyd Old、Burton Zbar等人进行的动物研究支持使用卡介苗诱导抗肿瘤免疫的直接证据[43,44,45,46,47]。早在1965年,在一个混合患者群体中就报道了bcg介导的人类抗肿瘤活性的证据。此后不久,bcg介导的抗肿瘤活性在急性淋巴细胞白血病[49]、转移性黑色素瘤[50]和其他癌症中被报道[37,38,51]。虽然我们对使用卡介苗作为癌症免疫疗法的解释可能会随着今天对免疫学的现代理解而改变,但卡介苗治疗膀胱癌的实际临床结果将被证明是最有影响力的。因此,Alvaro Morales在1976年报道了9例浅表性膀胱癌患者的良好反应,这是首次使用膀胱内卡介菌bbb治疗的人体试验的一部分。这项工作之后的随机试验证实了疗效[53,54,55,56],导致FDA于1990年批准卡介苗治疗NMIBC。虽然膀胱内卡介苗可导致NMIBC的持久应答,但高达40%的患者会出现疾病复发,此时患者被认为对额外的卡介苗治疗无应答[54,57,58]。为了提高BCG介导的抗肿瘤免疫,临床前膀胱癌大鼠研究表明,膀胱内灌注IL-15和BCG联合递送是安全的,并且可以提高抗肿瘤免疫[59,60,61]。这些临床前研究的作用机制尚未完全确定,但反应与NK细胞和炎症细胞因子的扩增有关。鉴于令人鼓舞的临床前研究,在NMIBC患者中评估了膀胱内N-803和卡介苗的联合使用,并在I期试验中观察到令人鼓舞的安全性、耐受性和长期预后[62]。然后,在一项单臂、多中心试验中,对伴有或不伴有乳头状肿瘤的原位癌的BCG无应答、高风险的NMIBC患者进行了膀胱内N-803与BCG的评估[63](NCT0302285, QUILT-3.032)。FDA报告的数据显示,在77例入组患者中,62%的患者完全缓解,58%的患者维持了12个月的完全缓解。这一缓解率远远超过FDA专家和国际膀胱癌组织制定的1年完全缓解30%的指导标准[64,66,66]。因此,FDA于2024年4月批准了N-803联合BCG用于该患者群体,这是FDA首次批准任何基于IL-15的治疗。虽然FDA的批准对患者来说是有希望的一步,但关键问题仍然存在,包括需要深入研究以建立N-803和卡介苗联合的作用机制。后者将有助于未来膀胱癌患者治疗方案的设计。更广泛地说,FDA的批准是值得注意的,因为它代表了细胞因子治疗癌症的新时代的第一个批准。对于IL-15超级激动剂,未来批准的可能是重组蛋白或基因编码结构,但也可能是IL-15尚未设想的概念。在目前的研究中没有生成或分析数据集。 FDA批准nogapendekin - alfa inbakicept-pmln治疗bcg无反应的非肌肉浸润性膀胱癌。2024 waldmann助教。细胞因子在癌症免疫治疗中的作用。寒泉生态学报,2018;10(12):a028472。文章CAS PubMed PubMed Central b谷歌学者Rosenberg SA。IL-2:第一个有效的人类癌症免疫疗法。中华免疫学杂志,2014;32 (12):551 - 558 (PMC6293462)。[文献]Wrangle JM, Patterson A, Johnson CB, Neitzke DJ, Mehrotra S, Denlinger CE, Paulos CM, Li Z, Cole DJ, Rubinstein MP。IL-2及以上在癌症免疫治疗中的作用。干扰素与细胞因子学报,2018;38(2):45-68 (PMC5815463)。文章中科院PubMed PubMed Central b谷歌学者Waldmann TA。白介素-2和白介素-15的生物学:对癌症治疗和疫苗设计的影响。中华免疫学杂志,2006;6(8):595-601。文章中科院PubMed bbb学者Leonard WJ, Lin JX, O’shea JJ。细胞因子的γ (c)家族:从基础生物学到治疗分支。免疫力。2019;(4):832 - 50。文章中科院PubMed bbb学者Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA等。肿瘤浸润淋巴细胞和白细胞介素-2在转移性黑色素瘤患者免疫治疗中的应用。初步报告。中华医学杂志。1988;31(2):376 - 388。文章中科院PubMed bbb学者Julve M, Lythgoe MP, Larkin J, Furness AJS。Lifileucel:首个被批准用于实体肿瘤的细胞疗法。巨蟹座。2024;10(6):475-7。文章中科院PubMed bbb学者Marabondo S, Kaufman HL。高剂量白介素-2 (IL-2)治疗黑色素瘤:安全性考虑及未来发展方向专家意见,2017;16(12):1347-57。[中国科学院PubMed bbb]学者测试员WJ, Kim KM, Krigel RL, Bonomi PD, Glick JH, Asbury RF, Kirkwood JM, Blum RH, Schiller JH.]一项随机II期研究,白介素-2联合和不联合β -干扰素治疗晚期非小细胞肺癌患者:一项东部合作肿瘤学组研究(PZ586)。肺癌杂志。1999;25(3):199-206。[文章]学者Grabstein KH, Eisenman J, Shanebeck K, Rauch C, Srinivasan S, Fung V, Beers C, Richardson J, Schoenborn MA, Ahdieh M,等。克隆与白细胞介素-2受体β链相互作用的T细胞生长因子。科学。1994;264(5161):965 - 8。[论文]Burton JD, Bamford RN, Peters C, Grant AJ, Kurys G, Goldman CK, Brennan J, Roessler E, Waldmann TA。一种淋巴因子,暂时被称为白细胞介素T,由人类成人T细胞白血病系产生,刺激T细胞增殖并诱导淋巴因子激活的杀伤细胞。美国国家科学促进会。91 (11): 4935 - 1994; 9 (PMC43904)。文章中科院PubMed PubMed Central bbb学者Fehniger TA, Caligiuri MA。白细胞介素15:生物学及其与人类疾病的相关性。血。2001;97(1):14-32。[中文][CAS PubMed]学者张晓,孙松,黄毅,Tough DF, Sprent J. IL-15对体内记忆型CD8+ T细胞的强效和选择性刺激。免疫力。1998;8(5):591 - 9。[CAS PubMed bbb]学者Lodolce JP, Burkett PR, Boone DL, Chien M, Ma A.旁观者增殖需要T细胞非依赖性白细胞介素15Ralpha信号。中华检验医学杂志,2001;19 (8):1186 - 1186 (PMC2193508)。文章中科院PubMed PubMed Central b谷歌学者Castillo EF, Schluns KS。通过IL-15表达调节免疫系统。细胞因子学报,2012;59(3):479-90 (PMC3422378)[论文]学者Dubois S, Patel HJ, Zhang M, Waldmann TA, Muller JR. IL-15与IL-15R α - igg1 - fc的预关联增强了IL-15对NK和CD8+/ cd44高T细胞的增殖活性及其抗肿瘤作用。中国生物医学工程学报,2008;18(4):559 - 561。[文献]Bergamaschi C, Rosati M, Jalah R, Valentin A, Kulkarni V, Alicea C, Zhang GM, Patel V, Felber BK, Pavlakis GN。白细胞介素-15在细胞内与其受体α的相互作用导致相互稳定和增加的生物活性。生物化学学报,2008;31(7):489 - 498。Stoklasek TA, Schluns KS, Lefrancois L.联合IL-15/IL-15Ralpha免疫治疗可使体内IL-15活性最大化。中华免疫学杂志,2006;17(9):662 - 668。[文献]Rubinstein MP, Kovar M, Purton JF, Cho JH, Boyman O, Surh CD, Sprent J. IL-15与可溶性il - 15rα结合转化为超激动剂。科学通报,2006;30 (3):366 - 371 (PMC1482584)。[文章]学者Mortier E, Quemener A, Vusio P, Lorenzen I, Boublik Y, Grotzinger J, Plet A, Jacques Y.可溶性白介素-15受体α (IL-15R α)通过IL-15R β / γ的选择性和有效的受体拮拮剂。高激动剂IL-15 x IL-15R α融合蛋白。生物化学学报,2006;31(3):1612-9。[文章]学者韩kp,朱旭,刘斌,郑e,孔玲,Yovandich JL, Vyas VV, Marcus WD, Chavaillaz PA, Romero CA, Rhode PR, Wong HC。 IL-15:IL-15受体α超激动剂复合物:在重组哺乳动物细胞中的高水平共表达、纯化和表征。细胞因子学报,2011;56(3):804-10 (PMC3221918)。[J]学者Lu D, Yadav R, Holder P, Chiang E, Sanjabi S, Poon V, Bernett M, Varma R, Liu K, Leung I, Bogaert L, Desjarlais J, Shivva V, Hosseini I, Ramanujan S. IL-15/ il - 15r α - fc融合蛋白复合物的PK-PD: cymol猴淋巴细胞动力学的QSP模型。中国生物医学工程学报,2016;22(6):564 - 564。[论文]Danek P, Simonova E, Podzimkova N, Bechard D, Sachse R, Kiemle-Kallee J, Moebius U, Spisek R, Adkins I, Steegmaier M, Jelinkova LP。Nanrilkefusp α是一种高亲和力IL-15Rβγ激动剂,可在晚期癌症患者中单独使用或与抗pd -1合用,促进先天和适应性抗肿瘤炎症环境。[J] .中华肿瘤杂志,2013;11:888 - 888。[10] Scholar Romee R, Cooley S, Berrien-Elliott MM, Westervelt P, Verneris MR, Wagner JE, Weisdorf DJ, Blazar BR, Ustun C, DeFor TE, Vivek S, Peck L, DiPersio JF, Cashen AF, Kyllo R, Musiek A, Schaffer A, Anadkat MJ, Rosman I, Miller D, Egan JO, Jeng EK, Rock A, Wong HC, Fehniger TA, &;米勒JS。IL-15超级激动剂复合物ALT-803治疗移植后复发的首次人体i期临床研究。中华医学杂志2018;31(3):2515-2527。PMC5992862的研究得到了Altor BioScience公司的支持,但没有从该试验的结果中获得经济利益。j。o。e。k。j。a。r。和h。c。w。是阿尔托生物科学公司的雇员,并宣布有直接的财务冲突。为了管理这些冲突,UMN和WUSM研究者领导了这项试验,他们是IND的发起人,管理研究中的所有数据,并对手稿负有最终责任。研究方案是一项研究者发起的临床试验。UMN和WUSM的研究人员进行了临床试验,包括数据收集、分析和解释。Altor BioScience对编码样品进行了ALT-803和细胞因子测量和免疫原性测试。其余相关分析及所有统计分析均采用UMN和WUSM进行。其余作者声明没有竞争的经济利益。Leidner R, Conlon K, McNeel DG, Wang-Gillam A, Gupta S, Wesolowski R, Chaudhari M, Hassounah N, Lee JB, Ho Lee L, O'Keeffe JA, Lewis N, Pavlakis GN, Thompson JA。NIZ985是一种重组IL-15和il - 15rα异源二聚体,在晚期和转移性实体瘤患者中作为单药或与斯巴达单抗联合进行的首次人体I/Ib期研究。[J] .免疫学与肿瘤学杂志,2017,11(10),刘志强,李志强,李志强,李志强,李志强,李志强,李志强,李志强,李志强,李志强,李志强,李志强,李志强,李志强。IL-15超级激动剂N-803对HIV感染者的安全性和病毒学影响:1期试验中华医学杂志,2010;28(2):392-400。[论文]学者Foltz JA, Hess BT, Bachanova V, Bartlett NL, Berrien-Elliott MM, McClain E, Becker-Hapak M, Foster M, Schappe T, Kahl B, Mehta-Shah N, Cashen AF, Marin ND, McDaniels K, Moreno C, mosim, Gao F, Griffith OL, Griffith M, Wagner JA, Epperla N, Rock AD, Lee J, Petti AA, Soon-Shiong P, Fehniger TA。il - 15受体激动剂N-803联合利妥昔单抗治疗惰性非霍奇金淋巴瘤的I期临床试验中华临床肿瘤杂志,2011;27(12):3339-50 (PMC8197753)。[文献]学者Margolin K, Morishima C, Velcheti V, Miller JS, Lee SM, Silk AW, Holtan SG, Lacroix AM, Fling SP, Kaiser JC, Egan JO, Jones M, Rhode PR, Rock AD, Cheever MA, Wong HC, Ernstoff MS.晚期实体瘤患者重组il - 15复合物ALT-803的I期临床试验。临床肿瘤杂志,2018;24(22):5552-61。文章CAS PubMed PubMed Central bbb学者Wrangle JM, velcheeti V, Patel MR, rett- mayer E, Hill EG, Ravenel JG, Miller JS, Farhad M, Anderton K, Lindsey K, taffro - neskey M, Sherman C, Suriano S, Swiderska-Syn M, Sion A, Harris J, Edwards AR, Rytlewski JA, Sanders CM, Yusko EC, Robinson MD, Krieg C, Redmond WL, Egan JO, Rhode PR, Jeng EK, Rock AD, Wong HC, Rubinstein MP。IL-15超级激动剂ALT-803联合nivolumab治疗转移性非小细胞肺癌患者:一项非随机、开放标签、1b期试验中华医学杂志,2018;19(5):694-704 (PMC6089612)。Rubinstein MP, Williams C, Mart C, Beall J, MacPherson L, Azar J, Swiderska-Syn M, Manca P, Gibney BC, Robinson MD, Krieg C, Hill EG, Taha SA, Rock AD, Lee JH, Soon-Shiong P, Wrangle J. IL-15超级受体拮抗剂N-803的I期临床试验特征。中华流行病学杂志[J]; 2010; 31(6): 563 - 567。 pmc9264881 lam DL, Blumenstein BA, Crawford ED, Montie JE, Scardino P, Grossman HB, Stanisic TH, Smith JA Jr, Sullivan J, Sarosdy MF等。膀胱内注射阿霉素和卡介苗免疫治疗膀胱移行细胞癌的随机试验。中华医学杂志,2001;32(3):391 - 391。文章中科院PubMed b谷歌学者Brosman SA。卡介苗治疗浅表性膀胱癌的体会。[J] .中华医学杂志。2002;28(1):1 - 7。文章中科院PubMed谷歌学者Sfakianos JP, Kim PH, Hakimi AA, Herr HW。膀胱内卡介苗对非肌性浸润性膀胱癌复发及进展率的影响。中国生物医学工程学报,2014;19 (2):341 - 341 (PMC4157345)。学者Sylvester RJ, van der Meijden AP, oosterlink W, Witjes JA, Bouffioux C, Denis L, Newling DW, Kurth K.使用EORTC风险表预测个体Ta T1期膀胱癌复发和进展:7项EORTC试验2596例患者的综合分析。Eur urrol 2006;49(3): 466-465;gomes - giacoia E, Miyake M, Goodison S, Sriharan A, Zhang G, You L, Egan JO, Rhode PR, Parker AS, Chai KX, Wong HC, Rosser CJ。膀胱内注射ALT-803和BCG可减轻膀胱癌大鼠模型的肿瘤负荷细胞因子的产生和NK细胞的扩增。科学通报,2014;9(6):e96705。PMC4045574已声明不存在竞争利益。LY, JOE, PRR和HCW是Altor BioScience Corp.的员工,这并不影响作者对《公共科学图书馆·综合》数据和材料共享政策的遵守(furuya H, Chan OTM, Pagano I, Zhu C, Kim N, Peres R, Hokutan K, alter S, Rhode P, Rosser CJ)。两种不同剂量IL-15超激动剂复合物(ALT-803)在原位膀胱癌小鼠模型中的有效性中华检验医学杂志,2019;17(1):29 (PMC6337786)。学者陈伟,刘宁,袁勇,朱敏,胡鑫,胡伟,王生,王超,黄斌,邢东。ALT-803治疗非肌肉侵袭性膀胱癌:临床前、临床证据及转化潜力。免疫学杂志,2022;13:10 040669 (PMC9684637)。[文献]Rosser CJ, Tikhonenkov S, Nix JW, Chan OTM, Ianculescu I, Reddy S, Soon-Shiong P. IL-15类似物(N-803)与卡介苗(Bacillus calmetet - guerin, BCG)混合治疗膀胱癌的安全性、耐受性和长期临床疗效。Oncoimmunology。2021;10(1):1912885。[文献]Scholar Chamie K, Chang SS, Kramolowsky E, Gonzalgo ML, Agarwal PK, Bassett JC, Bjurlin M, Cher ML, Clark W, Cowan BE, David R, Goldfischer E, Guru K, Jalkut MW, Kaffenberger SD, Kaminetsky J, Katz AE, Koo AS, Sexton WJ, Tikhonenkov SN, Trabulsi EJ, Trainer AF, Spilman P, Huang M, Bhar P, Taha SA, Sender L, Reddy S, Soon-Shiong P. IL-15超级受体抑制剂NAI在bcg无反应的非肌源性膀胱肿瘤中的作用。中国生物医学工程学报,2009;2(1):397 - 397。[1]学者Kamat AM, Sylvester RJ, Bohle A, Palou J, Lamm DL, Brausi M, Soloway M, Persad R, Buckley R, Colombel M, Witjes JA。非肌肉侵袭性膀胱癌的定义、终点和临床试验设计:来自国际膀胱癌小组的建议中华临床杂志,2016;34(16):1935-1944。PMC5321095在线www.jco.org。jarow JP, Lerner SP, Kluetz PG, Liu K, Sridhara R, Bajorin D, Chang S, Dinney CP, Groshen S, Morton RA, O 'Donnell M, Quale DZ, Schoenberg M, Seigne J, Vikram B.非肌肉浸润性膀胱癌新疗法开发的临床试验设计:美国食品药品监督管理局和泌尿外科协会公开研讨会报告。泌尿学。2014;83(2):262 - 4。文章来自PubMed bbb学者Kamat AM, Colombel M, Sundi D, Lamm D, Boehle A, Brausi M, Buckley R, Persad R, Palou J, Soloway M, Witjes JA。bcg无反应的非肌浸润性膀胱癌:IBCG的建议。地理学报,2017;14(4):244-55。我们感谢俄亥俄州立大学医学视觉医学插画师Anthony Baker、CMI和Courtney Fleming创作了这两个图形。MPR和ZL的工作得到了NIH和Pelotonia免疫肿瘤研究所的部分支持。NIH资助包括MPR (R01CA222817和R01CA264525), JW (R01CA222817)和ZL (R01CA282501和P01CA278732)。美国俄亥俄州立大学免疫肿瘤研究所,美国哥伦布市,43210美国俄亥俄州立大学医学院内科肿瘤学教研室,俄亥俄州哥伦布市,43210Mark P。 rub斯坦微生物感染与免疫系,俄亥俄州立大学,哥伦布市,俄亥俄州,43210,USAZihai lij,南卡罗来纳州查尔斯顿医科大学,医学部,血液学与肿瘤学部,南卡罗来纳州,29425,usa, john wrangle,南卡罗来纳州查尔斯顿医科大学,微生物学与免疫学系,南卡罗来纳州,29425,usa, john wrangle,加文医学研究所,达灵赫斯特,2010,澳大利亚。新南威尔士大学文森特临床学院,悉尼,1466年,AustraliaJonathan SprentAuthorsZihai LiView publicationsYou作者也可以搜索PubMed的作者在谷歌ScholarJohn WrangleView publicationsYou作者也可以搜索PubMed的作者在谷歌ScholarKai HeView publicationsYou作者也可以搜索PubMed的作者在谷歌ScholarJonathan SprentView publicationsYou作者也可以搜索PubMed的作者在谷歌ScholarMark p RubinsteinView publicationsYou作者也可以搜索这个作者[中文]:PubMed[中文]M.P.R.构思了这个想法并组织了写作。M.P.R.起草了手稿,并收到了所有作者的意见。所有作者都审阅并批准了最终稿件。通讯作者:马克·鲁宾斯坦发表同意不适用。竞争利益szl是HanchorBio的科学顾问委员会成员。其他作者声明没有利益冲突。出版商声明:对于已出版的地图和机构关系中的管辖权要求,普林格·自然保持中立。开放获取本文遵循知识共享署名4.0国际许可协议,该协议允许以任何媒介或格式使用、共享、改编、分发和复制,只要您适当地注明原作者和来源,提供知识共享许可协议的链接,并注明是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可协议中,除非在材料的署名中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不被法律法规允许或超过允许的用途,您将需要直接获得版权所有者的许可。要查看本许可协议的副本,请访问http://creativecommons.org/licenses/by/4.0/.Reprints和permissionsCite这篇文章,eli, Z., Wrangle, J., He, K.等人。IL-15:从发现到FDA批准。血液学杂志,1999,19(2)。https://doi.org/10.1186/s13045-025-01664-8Download citation:收稿日期:2024年9月2日接受日期:2025年1月13日发布日期:2025年2月18日doi: https://doi.org/10.1186/s13045-025-01664-8Share这篇文章任何你分享以下链接的人都可以阅读到这篇文章:获取可共享链接对不起,本文目前没有可共享链接。复制到剪贴板由施普林格自然共享内容倡议提供
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IL-15: from discovery to FDA approval

In April 2024, the FDA approved the interleukin (IL)−15 superagonist, N-803 (Anktiva, nogapendekin alfa inbakicept-pmln), for the treatment of bladder cancer [1]. This is the first cytokine in over 30 years to receive FDA approval for the treatment of cancer, and the culmination of years of preclinical and clinical studies involving both academic- and industry- driven research.

To understand the steps leading to this landmark approval, it is helpful to review some key historical events (Fig. 1). Notably, the first cytokines FDA approved for the treatment of cancer were interferon (type 1) (1986, hairy cell leukemia) and IL-2 (1992, renal cell carcinoma) [2]. Within a few years of their initial approvals, both cytokines would also receive other FDA approvals including for the treatment of metastatic melanoma. While both cytokines have broad immune stimulatory activities, IL-2 is unique in that it is also a powerful lymphocyte growth factor [3,4,5,6]. These qualities led to the evaluation and use of IL-2 with many other experimental immunotherapies including adoptive cell therapy. Notably, the adoptive transfer of tumor infiltrating lymphocytes (TIL) in combination with IL-2 first showed efficacy in human patients in the late 1980s [7]. After decades of work, in February 2024, TIL (lifileucel) in combination with IL-2 received FDA approval for the treatment of melanoma [8], which is the first approved adoptive cell therapy using lymphocytes for the treatment of a solid tumor.

Fig. 1
figure 1

Timeline of key events related to the discovery and development of IL-15 and BCG as therapeutics

Full size image

Despite its established efficacy, IL-2 has a short half-life, and at approved doses, IL-2 can induce life threatening toxicities [9]. This side effect profile likely severely curtailed subsequent clinical development. Thus, high dose IL-2 as a monotherapy was FDA approved for renal cell carcinoma and metastatic melanoma, clinical development for other indications halted despite evidence of efficacy in other cancers [10]. Thus began the effort to develop alternatives with a similar mechanism of action.

The discovery of IL-15 in 1994 was the first step in the development of a promising alternative to IL-2 [4,5,6, 11,12,13]. Like IL-2, IL-15 is a powerful lymphocyte growth factor for CD8+ T cells and NK cells. Both IL-2 and IL-15 induce similar intracellular signaling through the shared IL-2 receptor (R) βγ subunits. However, while the private IL-2Rα (CD25) subunit improves responsiveness to limiting amounts of IL-2, IL-15 signals independently of IL-2Rα. Because IL-2Rα is expressed at high and constitutive levels on immune suppressive T regulatory cells, an advantage of IL-15 is that it does not expand T regulatory cells. By itself, IL-15 can induce anti-tumor activity in preclinical models [4, 5, 13]. Interestingly, IL-15 can be induced by type I interferon signaling [14, 15], which suggests a mechanism for type 1 interferon-mediated anti-tumor efficacy. Further differentiating IL-15 from IL-2 is the private IL-15Rα subunit. While thought to allow for high affinity cytokine binding, the description of IL-15Rα as a receptor is somewhat of a misnomer as IL-15Rα can transpresent IL-15 either on the cell surface or in soluble format [4, 16]. Building off this knowledge, we and others found that pre-association of soluble IL-15Rα subunit with IL-15 (with or without an Fc) could dramatically improve biological activity and half-life of IL-15 in vitro and in vivo, and these IL-15/IL-15Rα complexes had potent anti-tumor activity [17,18,19,20,21]. Based on this concept (Fig. 2), several companies have developed clinical grade reagents including N-803 (Anktiva), NIZ985, SOT101 (Nanrilkefusp alfa), and XmAb24306 (Efbalropendekin alfa) [22,23,24,25,26].

Fig. 2
figure 2

Diagram of N-803 (IL-15/IL-15Rα cytokine complexes) including IL-15, IL-15Rα, and the Fc region from IgG1

Full size image

These IL-15 superagonists have now been evaluated in a wide range of clinical trials including patients with cancer and HIV-1 infection [23,24,25,26,27,28,29,30]. Similar to animal studies, human trials have shown IL-15/IL-15Rα complexes have improved half-life and cytokine-induced biological activity on human lymphocytes including CD8+ T cells and NK cells when compared to free IL-15 [25, 31, 32]. Importantly, at the doses used, this biological activity was obtained without the severe toxicities or need for in-hospital administration associated with high dose IL-2. For the agent in most advanced clinical testing, N-803, single agent activity was shown in patients with hematological malignancies who relapsed after allogeneic hematopoietic cell transplantation [25]. We and others have shown these agents can be administered safely in combination with other immunotherapy agents and with encouraging efficacy signals [26, 28, 30]. Thus, the combination of N-803 and anti-PD-1 mAb (nivolumab) could be given safely to NSCLC patients [30], and there is an ongoing phase III trial (NCT03520686). Taking advantage of the expansion and activation of Fc receptor-expressing immune cells such as NK cells that can mediate enhanced antibody-dependent cellular cytotoxicity, IL-15-based agents show the ability to enhance the efficacy of tumor-targeting antibodies [33]. Clinically, success with this concept has been demonstrated by combination of N-803 with rituximab (anti-CD20 mAb) [28]. Another appealing approach, not yet assessed clinically, is the use of systemic IL-15 agents instead of high dose IL-2 to support adoptively transferred T cells, such as TIL, administered after lymphodepletion. In addition to approaches using early generation IL-15 agents, it is notable that other approaches are in development including the use of fusion proteins combining IL-15 with targeting moieties (such as directing IL-15 to PD-1 expressing lymphocytes) and genetically encoded membrane-bound IL-15 [34, 35]. Expression of membrane-bound IL-15 on adoptively transferred lymphocytes may improve functional capacity and reduce the need for lymphodepleting chemotherapy [36].

The treatment of non-muscle invasive bladder cancer (NMIBC) involves the use of intravesical bacillus Calmette-Guerin (BCG) to avoid cystectomy [37, 38]. BCG was initially developed as a vaccine for tuberculosis, and since initial human testing in 1921, has been the most widely used vaccine worldwide [37,38,39]. Interest in using BCG for cancer therapy resulted from work by William Coley and others showing that bacterial agents may trigger anti-tumor immunity [40, 41], and BCG use in cancer patients was reported as early as 1936 [42]. Direct evidence in support of the use of BCG to induce anti-tumor immunity was supported by animal studies conducted by Lloyd Old, Burton Zbar, and others [43,44,45,46,47]. Evidence of BCG-mediated anti-tumor activity in humans was reported as early as 1965 in a mixed patient population [48]. Soon thereafter, evidence of BCG-mediated anti-tumor activity was reported in acute lymphoblastic leukemia [49], metastatic melanoma [50], and other cancers [37, 38, 51]. While our interpretation of the use of BCG as a cancer immunotherapy might be altered with today’s modern understanding of immunology, the practical clinical results of BCG therapy in bladder cancer would prove most impactful. Thus, in 1976 Alvaro Morales reported favorable responses in 9 patients with superficial bladder cancer treated as part of the first human trial using intravesical BCG [52]. This work was followed by randomized trials confirming efficacy [53,54,55,56], leading the FDA to approve BCG for NMIBC in 1990 [37].

While intravesical BCG can lead to durable responses in NMIBC, up to 40% of patients have disease recurrence at which time patients are thought to be unresponsive to additional BCG administration [54, 57, 58]. With the goal of improving BCG-mediated anti-tumor immunity, preclinical bladder cancer studies in rats demonstrated the combination of IL-15 and BCG delivery by intravesical instillation was safe and improved anti-tumor immunity [59,60,61]. The mechanism of action in these preclinical studies was not fully established, but responses were associated with expansion of NK cells and inflammatory cytokines. Given the encouraging preclinical studies, the combination of intravesical N-803 and BCG was evaluated in NMIBC patients, and in a phase I trial, encouraging safety, tolerability, and long-term outcomes were observed [62]. Intravesical N-803 given with BCG was then evaluated in a single-arm, multicenter trial of BCG-unresponsive, high-risk NMIBC patients with carcinoma in situ with or without papillary tumors [63] (NCT0302285, QUILT-3.032). In data reported by the FDA, 62% of the 77 patients enrolled had a complete response, with 58% of patients sustaining this complete response for 12 months. This response rate far exceeded guidance of 30% complete response at 1 year set by FDA experts and the International Bladder Cancer Group [64,65,66]. As a result, in April 2024 the FDA approved N-803 with BCG for this patient population [1], which represents the first FDA approval of any IL-15 based therapy.

While this FDA approval represents a promising step for patients, critical questions remain including the need for in-depth studies to establish the mechanism of action of the combination of N-803 and BCG. The latter will be helpful for the design of future therapies for bladder cancer patients. More broadly, this FDA approval is noteworthy as it represents the first of a new era of approvals for cytokines in the treatment of cancer. For IL-15 superagonists, future approvals might be for recombinant protein or genetically encoded constructs, however, it may also be for an IL-15-concept not yet envisioned.

No datasets were generated or analysed during the current study.

  1. FDA. FDA approves nogapendekin alfa inbakicept-pmln for BCG-unresponsive non-muscle invasive bladder cancer. 2024

  2. Waldmann TA. Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol. 2018;10(12):a028472.

    Article CAS PubMed PubMed Central Google Scholar

  3. Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol. 2014;192(12):5451–8 (PMC6293462).

    Article CAS PubMed Google Scholar

  4. Wrangle JM, Patterson A, Johnson CB, Neitzke DJ, Mehrotra S, Denlinger CE, Paulos CM, Li Z, Cole DJ, Rubinstein MP. IL-2 and beyond in cancer immunotherapy. J Interferon Cytokine Res. 2018;38(2):45–68 (PMC5815463).

    Article CAS PubMed PubMed Central Google Scholar

  5. Waldmann TA. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol. 2006;6(8):595–601.

    Article CAS PubMed Google Scholar

  6. Leonard WJ, Lin JX, O’Shea JJ. The gamma(c) family of cytokines: basic biology to therapeutic ramifications. Immunity. 2019;50(4):832–50.

    Article CAS PubMed Google Scholar

  7. Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 1988;319(25):1676–80.

    Article CAS PubMed Google Scholar

  8. Julve M, Lythgoe MP, Larkin J, Furness AJS. Lifileucel: the first cellular therapy approved for solid tumours. Trends Cancer. 2024;10(6):475–7.

    Article CAS PubMed Google Scholar

  9. Marabondo S, Kaufman HL. High-dose interleukin-2 (IL-2) for the treatment of melanoma: safety considerations and future directions. Expert Opin Drug Saf. 2017;16(12):1347–57.

    Article CAS PubMed Google Scholar

  10. Tester WJ, Kim KM, Krigel RL, Bonomi PD, Glick JH, Asbury RF, Kirkwood JM, Blum RH, Schiller JH. A randomized phase II study of interleukin-2 with and without beta-interferon for patients with advanced non-small cell lung cancer: an eastern cooperative oncology group study (PZ586). Lung Cancer. 1999;25(3):199–206.

    Article CAS PubMed Google Scholar

  11. Grabstein KH, Eisenman J, Shanebeck K, Rauch C, Srinivasan S, Fung V, Beers C, Richardson J, Schoenborn MA, Ahdieh M, et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science. 1994;264(5161):965–8.

    Article CAS PubMed Google Scholar

  12. Burton JD, Bamford RN, Peters C, Grant AJ, Kurys G, Goldman CK, Brennan J, Roessler E, Waldmann TA. A lymphokine, provisionally designated interleukin T and produced by a human adult T-cell leukemia line, stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc Natl Acad Sci USA. 1994;91(11):4935–9 (PMC43904).

    Article CAS PubMed PubMed Central Google Scholar

  13. Fehniger TA, Caligiuri MA. Interleukin 15: biology and relevance to human disease. Blood. 2001;97(1):14–32.

    Article CAS PubMed Google Scholar

  14. Zhang X, Sun S, Hwang I, Tough DF, Sprent J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity. 1998;8(5):591–9.

    Article CAS PubMed Google Scholar

  15. Lodolce JP, Burkett PR, Boone DL, Chien M, Ma A. T cell-independent interleukin 15Ralpha signals are required for bystander proliferation. J Exp Med. 2001;194(8):1187–94 (PMC2193508).

    Article CAS PubMed PubMed Central Google Scholar

  16. Castillo EF, Schluns KS. Regulating the immune system via IL-15 transpresentation. Cytokine. 2012;59(3):479–90 (PMC3422378).

    Article CAS PubMed PubMed Central Google Scholar

  17. Dubois S, Patel HJ, Zhang M, Waldmann TA, Muller JR. Preassociation of IL-15 with IL-15R alpha-IgG1-Fc enhances its activity on proliferation of NK and CD8+/CD44high T cells and its antitumor action. J Immunol. 2008;180(4):2099–106.

    Article CAS PubMed Google Scholar

  18. Bergamaschi C, Rosati M, Jalah R, Valentin A, Kulkarni V, Alicea C, Zhang GM, Patel V, Felber BK, Pavlakis GN. Intracellular interaction of interleukin-15 with its receptor alpha during production leads to mutual stabilization and increased bioactivity. J Biol Chem. 2008;283(7):4189–99.

    Article CAS PubMed Google Scholar

  19. Stoklasek TA, Schluns KS, Lefrancois L. Combined IL-15/IL-15Ralpha immunotherapy maximizes IL-15 activity in vivo. J Immunol. 2006;177(9):6072–80 (PMC2847275).

    Article CAS PubMed Google Scholar

  20. Rubinstein MP, Kovar M, Purton JF, Cho JH, Boyman O, Surh CD, Sprent J. Converting IL-15 to a superagonist by binding to soluble IL-15Ralpha. Proc Natl Acad Sci U S A. 2006;103(24):9166–71 (PMC1482584).

    Article CAS PubMed PubMed Central Google Scholar

  21. Mortier E, Quemener A, Vusio P, Lorenzen I, Boublik Y, Grotzinger J, Plet A, Jacques Y. Soluble interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective and potent agonist of IL-15 action through IL-15R beta/gamma. Hyperagonist IL-15 x IL-15R alpha fusion proteins. J Biol Chem. 2006;281(3):1612–9.

    Article CAS PubMed Google Scholar

  22. Han KP, Zhu X, Liu B, Jeng E, Kong L, Yovandich JL, Vyas VV, Marcus WD, Chavaillaz PA, Romero CA, Rhode PR, Wong HC. IL-15:IL-15 receptor alpha superagonist complex: high-level co-expression in recombinant mammalian cells, purification and characterization. Cytokine. 2011;56(3):804–10 (PMC3221918).

    Article CAS PubMed PubMed Central Google Scholar

  23. Lu D, Yadav R, Holder P, Chiang E, Sanjabi S, Poon V, Bernett M, Varma R, Liu K, Leung I, Bogaert L, Desjarlais J, Shivva V, Hosseini I, Ramanujan S. Complex PK-PD of an engineered IL-15/IL-15Ralpha-Fc fusion protein in cynomolgus monkeys: QSP modeling of lymphocyte dynamics. Eur J Pharm Sci. 2023;186:106450.

    Article CAS PubMed Google Scholar

  24. Danek P, Simonova E, Podzimkova N, Bechard D, Sachse R, Kiemle-Kallee J, Moebius U, Spisek R, Adkins I, Steegmaier M, Jelinkova LP. 713 Nanrilkefusp alfa, a high-affinity IL-15Rβγ agonist, promotes an innate and adaptive anti-tumour inflammatory environment as single agent or combined with anti-PD-1 in patients with advanced cancers. J Immunother Cancer. 2023;11:A808–A808.

    Google Scholar

  25. Romee R, Cooley S, Berrien-Elliott MM, Westervelt P, Verneris MR, Wagner JE, Weisdorf DJ, Blazar BR, Ustun C, DeFor TE, Vivek S, Peck L, DiPersio JF, Cashen AF, Kyllo R, Musiek A, Schaffer A, Anadkat MJ, Rosman I, Miller D, Egan JO, Jeng EK, Rock A, Wong HC, Fehniger TA, & Miller JS. First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. Blood 2018;131(23): 2515–2527. PMC5992862 research support from Altor BioScience, a Nantworks company, but have no financial benefit from the outcome of this trial. J.O.E., E.K.J., A.R., and H.C.W. are employees of Altor BioScience and declare direct financial conflicts. To manage these conflicts, UMN and WUSM investigators led this trial, were sponsors of the IND, managed all the data in the study, and had final responsibility for the manuscript. The study protocol was an investigator-initiated clinical trial. UMN and WUSM investigators performed the clinical trial including data collection, analysis, and interpretation. Altor BioScience performed ALT-803 and cytokine measurements and immunogenicity testing on coded samples. The remaining correlative assays and all statistical analyses were performed by UMN and WUSM. The remaining authors declare no competing financial interests.

  26. Leidner R, Conlon K, McNeel DG, Wang-Gillam A, Gupta S, Wesolowski R, Chaudhari M, Hassounah N, Lee JB, Ho Lee L, O'Keeffe JA, Lewis N, Pavlakis GN, Thompson JA. First-in-human phase I/Ib study of NIZ985, a recombinant heterodimer of IL-15 and IL-15Ralpha, as a single agent and in combination with spartalizumab in patients with advanced and metastatic solid tumors. J Immunother Cancer 2023;11(10)

  27. Miller JS, Davis ZB, Helgeson E, Reilly C, Thorkelson A, Anderson J, Lima NS, Jorstad S, Hart GT, Lee JH, Safrit JT, Wong H, Cooley S, Gharu L, Chung H, Soon-Shiong P, Dobrowolski C, Fletcher CV, Karn J, Douek DC, Schacker TW. Safety and virologic impact of the IL-15 superagonist N-803 in people living with HIV: a phase 1 trial. Nat Med. 2022;28(2):392–400.

    Article CAS PubMed Google Scholar

  28. Foltz JA, Hess BT, Bachanova V, Bartlett NL, Berrien-Elliott MM, McClain E, Becker-Hapak M, Foster M, Schappe T, Kahl B, Mehta-Shah N, Cashen AF, Marin ND, McDaniels K, Moreno C, Mosior M, Gao F, Griffith OL, Griffith M, Wagner JA, Epperla N, Rock AD, Lee J, Petti AA, Soon-Shiong P, Fehniger TA. Phase I trial of N-803, an IL15 receptor agonist, with rituximab in patients with indolent non-hodgkin lymphoma. Clin Cancer Res. 2021;27(12):3339–50 (PMC8197753).

    Article CAS PubMed PubMed Central Google Scholar

  29. Margolin K, Morishima C, Velcheti V, Miller JS, Lee SM, Silk AW, Holtan SG, Lacroix AM, Fling SP, Kaiser JC, Egan JO, Jones M, Rhode PR, Rock AD, Cheever MA, Wong HC, Ernstoff MS. Phase I trial of ALT-803, a novel recombinant IL15 complex, in patients with advanced solid tumors. Clin Cancer Res. 2018;24(22):5552–61.

    Article CAS PubMed PubMed Central Google Scholar

  30. Wrangle JM, Velcheti V, Patel MR, Garrett-Mayer E, Hill EG, Ravenel JG, Miller JS, Farhad M, Anderton K, Lindsey K, Taffaro-Neskey M, Sherman C, Suriano S, Swiderska-Syn M, Sion A, Harris J, Edwards AR, Rytlewski JA, Sanders CM, Yusko EC, Robinson MD, Krieg C, Redmond WL, Egan JO, Rhode PR, Jeng EK, Rock AD, Wong HC, Rubinstein MP. ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol. 2018;19(5):694–704 (PMC6089612).

    Article CAS PubMed PubMed Central Google Scholar

  31. Rubinstein MP, Williams C, Mart C, Beall J, MacPherson L, Azar J, Swiderska-Syn M, Manca P, Gibney BC, Robinson MD, Krieg C, Hill EG, Taha SA, Rock AD, Lee JH, Soon-Shiong P, Wrangle J. Phase I trial characterizing the pharmacokinetic profile of N-803, a chimeric IL-15 superagonist. Healthy Volunt J Immunol. 2022;208(6):1362–70.

    Article CAS Google Scholar

  32. Conlon KC, Lugli E, Welles HC, Rosenberg SA, Fojo AT, Morris JC, Fleisher TA, Dubois SP, Perera LP, Stewart DM, Goldman CK, Bryant BR, Decker JM, Chen J, Worthy TA, Figg WD, Sr., Peer CJ, Sneller MC, Lane HC, Yovandich JL, Creekmore SP, Roederer M, & Waldmann TA. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J Clin Oncol 2015;33(1):74–82. PMC4268254 online at www.jco.org. Author contributions are found at the end of this article

  33. Zhang M, Wen B, Anton OM, Yao Z, Dubois S, Ju W, Sato N, DiLillo DJ, Bamford RN, Ravetch JV, Waldmann TA. IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by NK cells and macrophages. Proc Natl Acad Sci USA. 2018;115(46):E10915–24 (PMC6243244).

    Article CAS PubMed PubMed Central Google Scholar

  34. Hurton LV, Singh H, Najjar AM, Switzer KC, Mi T, Maiti S, Olivares S, Rabinovich B, Huls H, Forget MA, Datar V, Kebriaei P, Lee DA, Champlin RE, Cooper LJ. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc Natl Acad Sci U S A. 2016;113(48):E7788–97 (PMC5137758).

    Article CAS PubMed PubMed Central Google Scholar

  35. Shen J, Zou Z, Guo J, Cai Y, Xue D, Liang Y, Wang W, Peng H, Fu YX. An engineered concealed IL-15-R elicits tumor-specific CD8+T cell responses through PD-1-cis delivery. J Exp Med 2022;219(12). PMC9521244 based fusion proteins" pending. No other disclosures were reported

  36. Sanchez-Moreno I, Lasarte-Cia A, Martin-Otal C, Casares N, Navarro F, Gorraiz M, Sarrion P, Hervas-Stubbs S, Jordana L, Rodriguez-Madoz JR, San Miguel J, Prosper F, Lasarte JJ, Lozano T. Tethered IL15-IL15Ralpha augments antitumor activity of CD19 CAR-T cells but displays long-term toxicity in an immunocompetent lymphoma mouse model. J Immunother Cancer 2024;12(7). PMC11218034

  37. Herr HW, Morales A. History of bacillus Calmette-Guerin and bladder cancer: an immunotherapy success story. J Urol. 2008;179(1):53–6.

    Article PubMed Google Scholar

  38. Hersh EM, Gutterman JU, Mavligit GM. BCG as adjuvant immunotherapy for neoplasia. Annu Rev Med. 1977;28:489–515.

    Article CAS PubMed Google Scholar

  39. Luca S, Mihaescu T. History of BCG vaccine. Maedica (Bucur). 2013;8(1):53–8 (PMC3749764).

    PubMed Google Scholar

  40. Kucerova P, Cervinkova M. Spontaneous regression of tumour and the role of microbial infection–possibilities for cancer treatment. Anticancer Drugs. 2016;27(4):269–77 (PMC4777220).

    Article CAS PubMed PubMed Central Google Scholar

  41. Nauts HC, Swift WE, Coley BL. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research. Cancer Res. 1946;6:205–16.

    CAS PubMed Google Scholar

  42. Holmgren I. Employment of B. C. G., especially in intravenous injection. Acta Med Scand. 1936;90(S78):350–61.

    Article Google Scholar

  43. Old LJ, Clarke DA, Benacerraf B. Effect of Bacillus Calmette-Guerin infection on transplanted tumours in the mouse. Nature. 1959;184(Suppl 5):291–2.

    Article Google Scholar

  44. Zbar B, Bernstein I, Tanaka T, Rapp HJ. Tumor immunity produced by the intradermal inoculation of living tumor cells and living Mycobacterium bovis (strain BCG). Science. 1970;170(3963):1217–8.

    Article CAS PubMed Google Scholar

  45. Bast RC Jr, Zbar B, Borsos T, Rapp HJ. BCG and cancer (first of two parts). N Engl J Med. 1974;290(25):1413–20.

    Article PubMed Google Scholar

  46. Lemonde P, Clode M. Effect of BCG infection on leukemia and polyoma in mice and hamsters. Proc Soc Exp Biol Med. 1962;111:739–42.

    Article CAS PubMed Google Scholar

  47. Weiss DW, Bonhag RS, Deome KB. Protective activity of fractions of tubercle bacilli against isologous tumours in mice. Nature. 1961;190:889–91.

    Article CAS PubMed Google Scholar

  48. Villasor RP. The clinical use of BCG vaccine in stimulating host resistance to cancer. J Philipp Med Assoc. 1965;41(9):619–32.

    CAS PubMed Google Scholar

  49. Mathe G, Amiel JL, Schwarzenberg L, Schneider M, Cattan A, Schlumberger JR, Hayat M, De Vassal F. Active immunotherapy for acute lymphoblastic leukaemia. Lancet. 1969;1(7597):697–9.

    Article CAS PubMed Google Scholar

  50. Morton D, Eilber FR, Malmgren RA, Wood WC. Immunological factors which influence response to immunotherapy in malignant melanoma. Surgery 1970;68(1):158–163; discussion 163–154

  51. Bast RC Jr, Zbar B, Borsos T, Rapp HJ. BCG and cancer. N Engl J Med. 1974;290(26):1458–69.

    Article PubMed Google Scholar

  52. Morales A, Eidinger D, Bruce AW. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol. 1976;116(2):180–3.

    Article CAS PubMed Google Scholar

  53. Lamm DL, Thor DE, Harris SC, Reyna JA, Stogdill VD, Radwin HM. Bacillus Calmette-Guerin immunotherapy of superficial bladder cancer. J Urol. 1980;124(1):38–40.

    Article CAS PubMed Google Scholar

  54. Jiang S, Redelman-Sidi G. BCG in bladder cancer immunotherapy. Cancers (Basel) 2022;14(13). PMC9264881

  55. Lamm DL, Blumenstein BA, Crawford ED, Montie JE, Scardino P, Grossman HB, Stanisic TH, Smith JA Jr, Sullivan J, Sarosdy MF, et al. A randomized trial of intravesical doxorubicin and immunotherapy with bacille Calmette-Guerin for transitional-cell carcinoma of the bladder. N Engl J Med. 1991;325(17):1205–9.

    Article CAS PubMed Google Scholar

  56. Brosman SA. Experience with bacillus Calmette-Guerin in patients with superficial bladder carcinoma. J Urol. 1982;128(1):27–30.

    Article CAS PubMed Google Scholar

  57. Sfakianos JP, Kim PH, Hakimi AA, Herr HW. The effect of restaging transurethral resection on recurrence and progression rates in patients with nonmuscle invasive bladder cancer treated with intravesical bacillus Calmette-Guerin. J Urol. 2014;191(2):341–5 (PMC4157345).

    Article PubMed Google Scholar

  58. Sylvester RJ, van der Meijden AP, Oosterlinck W, Witjes JA, Bouffioux C, Denis L, Newling DW, Kurth K. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol 2006;49(3):466–465; discussion 475–467

  59. Gomes-Giacoia E, Miyake M, Goodison S, Sriharan A, Zhang G, You L, Egan JO, Rhode PR, Parker AS, Chai KX, Wong HC, Rosser CJ. Intravesical ALT-803 and BCG treatment reduces tumor burden in a carcinogen induced bladder cancer rat model; a role for cytokine production and NK cell expansion. PLoS One 2014;9(6):e96705. PMC4045574 have declared that no competing interests exist. LY, JOE, PRR and HCW are employees of Altor BioScience Corp. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials

  60. Furuya H, Chan OTM, Pagano I, Zhu C, Kim N, Peres R, Hokutan K, Alter S, Rhode P, Rosser CJ. Effectiveness of two different dose administration regimens of an IL-15 superagonist complex (ALT-803) in an orthotopic bladder cancer mouse model. J Transl Med. 2019;17(1):29 (PMC6337786).

    Article PubMed PubMed Central Google Scholar

  61. Chen W, Liu N, Yuan Y, Zhu M, Hu X, Hu W, Wang S, Wang C, Huang B, Xing D. ALT-803 in the treatment of non-muscle-invasive bladder cancer: preclinical and clinical evidence and translational potential. Front Immunol. 2022;13:1040669 (PMC9684637).

    Article CAS PubMed PubMed Central Google Scholar

  62. Rosser CJ, Tikhonenkov S, Nix JW, Chan OTM, Ianculescu I, Reddy S, Soon-Shiong P. Safety, tolerability, and long-term clinical outcomes of an IL-15 analogue (N-803) admixed with Bacillus Calmette-Guerin (BCG) for the treatment of bladder cancer. Oncoimmunology. 2021;10(1):1912885.

    Article PubMed PubMed Central Google Scholar

  63. Chamie K, Chang SS, Kramolowsky E, Gonzalgo ML, Agarwal PK, Bassett JC, Bjurlin M, Cher ML, Clark W, Cowan BE, David R, Goldfischer E, Guru K, Jalkut MW, Kaffenberger SD, Kaminetsky J, Katz AE, Koo AS, Sexton WJ, Tikhonenkov SN, Trabulsi EJ, Trainer AF, Spilman P, Huang M, Bhar P, Taha SA, Sender L, Reddy S, Soon-Shiong P. IL-15 superagonist NAI in BCG-unresponsive non-muscle-invasive bladder cancer. NEJM Evid. 2023;2(1):EVIDo2200167.

    Article Google Scholar

  64. Kamat AM, Sylvester RJ, Bohle A, Palou J, Lamm DL, Brausi M, Soloway M, Persad R, Buckley R, Colombel M, Witjes JA. Definitions, End Points, and Clinical Trial Designs for Non-Muscle-Invasive Bladder Cancer: Recommendations From the International Bladder Cancer Group. J Clin Oncol 2016;34(16):1935–1944. PMC5321095 online at www.jco.org. Author contributions are found at the end of this article

  65. Jarow JP, Lerner SP, Kluetz PG, Liu K, Sridhara R, Bajorin D, Chang S, Dinney CP, Groshen S, Morton RA, O’Donnell M, Quale DZ, Schoenberg M, Seigne J, Vikram B. Clinical trial design for the development of new therapies for nonmuscle-invasive bladder cancer: report of a food and drug administration and American urological association public workshop. Urology. 2014;83(2):262–4.

    Article PubMed Google Scholar

  66. Kamat AM, Colombel M, Sundi D, Lamm D, Boehle A, Brausi M, Buckley R, Persad R, Palou J, Soloway M, Witjes JA. BCG-unresponsive non-muscle-invasive bladder cancer: recommendations from the IBCG. Nat Rev Urol. 2017;14(4):244–55.

    Article PubMed Google Scholar

Download references

We are grateful to Anthony Baker, CMI, and Courtney Fleming, medical illustrators at The Ohio State University Medical Visuals, for creating the two figures.

The work from MPR and ZL is supported in part by NIH and the Pelotonia Institute for Immuno-Oncology. Support from NIH grants includes MPR (R01CA222817 and R01CA264525), JW (R01CA222817), and ZL (R01CA282501 and P01CA278732).

Authors and Affiliations

  1. Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, 43210, USA

    Zihai Li, Kai He & Mark P. Rubinstein

  2. Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA

    Zihai Li, Kai He & Mark P. Rubinstein

  3. Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA

    Zihai Li

  4. Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA

    John Wrangle

  5. Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA

    John Wrangle

  6. Immunology Division, Garvan Institute of Medical Research, Darlinghurst, 2010, Australia

    Jonathan Sprent

  7. St. Vincent’s Clinical School, University of New South Wales, Sydney, 1466, Australia

    Jonathan Sprent

Authors
  1. Zihai LiView author publications

    You can also search for this author in PubMed Google Scholar

  2. John WrangleView author publications

    You can also search for this author in PubMed Google Scholar

  3. Kai HeView author publications

    You can also search for this author in PubMed Google Scholar

  4. Jonathan SprentView author publications

    You can also search for this author in PubMed Google Scholar

  5. Mark P. RubinsteinView author publications

    You can also search for this author in PubMed Google Scholar

Contributions

Z.L. and M.P.R. conceived the idea and organized the writing. M.P.R. drafted the manuscript and received input from all authors. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Mark P. Rubinstein.

Consent for publication

Not applicable.

Competing interests

ZL serves as a member of the scientific advisory board for HanchorBio. The other authors declare no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wrangle, J., He, K. et al. IL-15: from discovery to FDA approval. J Hematol Oncol 18, 19 (2025). https://doi.org/10.1186/s13045-025-01664-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13045-025-01664-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
48.10
自引率
2.10%
发文量
169
审稿时长
6-12 weeks
期刊介绍: The Journal of Hematology & Oncology, an open-access journal, publishes high-quality research covering all aspects of hematology and oncology, including reviews and research highlights on "hot topics" by leading experts. Given the close relationship and rapid evolution of hematology and oncology, the journal aims to meet the demand for a dedicated platform for publishing discoveries from both fields. It serves as an international platform for sharing laboratory and clinical findings among laboratory scientists, physician scientists, hematologists, and oncologists in an open-access format. With a rapid turnaround time from submission to publication, the journal facilitates real-time sharing of knowledge and new successes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信