{"title":"通过环形能量迁移增强白光响应型近红外-II 族光致发光的范式","authors":"Haikuo Liu, Mengmeng Dai, Kejie Li, Hanyu Xu, Yanling Wei, Zuoling Fu","doi":"10.1002/adom.202402398","DOIUrl":null,"url":null,"abstract":"<p>Near-infrared II (NIR-II, 1000–1700 nm) lanthanide-doped fluorescent probes provide a powerful new tool for existing clinical biomedical sensing and imaging. However, it is impeded in practical applications by its specific high-energy laser source. Herein, a white-light responsive Ce<sup>3+</sup>-mediated toroidal energy migration downshifting topological core–shell structure NIR-IIb (1500–1700 nm) fluorescent probe is reported. It is found that Ce<sup>3+</sup> doping enhances the NIR downshifting luminescence of the Ho<sup>3+</sup> and Nd<sup>3+</sup>, thereby increasing the energy-transferred Yb<sup>3+</sup> luminescence. The NaCeF<sub>4</sub> core is able to further facilitate the crossrelaxation between the intermediate-shell layer of Er<sup>3+</sup> and Ce<sup>3+</sup> through the outward-to-inward core–shell topology, enhancing the 1527 nm luminescence to form the toroidal energy migration paradigm. Additionally, the luminescence of Er<sup>3</sup>⁺ exhibits strong temperature dependence, enabling superior temperature sensing under multiple light sources. Under low-power white light source, the relative sensitivity (<i>S</i><sub>r</sub>) can reach up to 0.57% K<sup>−1</sup>, with a minimum temperature uncertainty (<i>δT</i>) of 0.2 K. Moreover, portable light conversion using highly efficient white-light responsive emission in NIR-II region enables noninjectable intravenous imaging and food inspection. This toroidal energy migration strategy provides a new direction for lanthanide energy harvesting and multisource NIR applications.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 5","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Paradigm Enhancement of White-Light Responsive NIR-II Photoluminescence via Toroidal Energy Migration\",\"authors\":\"Haikuo Liu, Mengmeng Dai, Kejie Li, Hanyu Xu, Yanling Wei, Zuoling Fu\",\"doi\":\"10.1002/adom.202402398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Near-infrared II (NIR-II, 1000–1700 nm) lanthanide-doped fluorescent probes provide a powerful new tool for existing clinical biomedical sensing and imaging. However, it is impeded in practical applications by its specific high-energy laser source. Herein, a white-light responsive Ce<sup>3+</sup>-mediated toroidal energy migration downshifting topological core–shell structure NIR-IIb (1500–1700 nm) fluorescent probe is reported. It is found that Ce<sup>3+</sup> doping enhances the NIR downshifting luminescence of the Ho<sup>3+</sup> and Nd<sup>3+</sup>, thereby increasing the energy-transferred Yb<sup>3+</sup> luminescence. The NaCeF<sub>4</sub> core is able to further facilitate the crossrelaxation between the intermediate-shell layer of Er<sup>3+</sup> and Ce<sup>3+</sup> through the outward-to-inward core–shell topology, enhancing the 1527 nm luminescence to form the toroidal energy migration paradigm. Additionally, the luminescence of Er<sup>3</sup>⁺ exhibits strong temperature dependence, enabling superior temperature sensing under multiple light sources. Under low-power white light source, the relative sensitivity (<i>S</i><sub>r</sub>) can reach up to 0.57% K<sup>−1</sup>, with a minimum temperature uncertainty (<i>δT</i>) of 0.2 K. Moreover, portable light conversion using highly efficient white-light responsive emission in NIR-II region enables noninjectable intravenous imaging and food inspection. This toroidal energy migration strategy provides a new direction for lanthanide energy harvesting and multisource NIR applications.</p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"13 5\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adom.202402398\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202402398","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Paradigm Enhancement of White-Light Responsive NIR-II Photoluminescence via Toroidal Energy Migration
Near-infrared II (NIR-II, 1000–1700 nm) lanthanide-doped fluorescent probes provide a powerful new tool for existing clinical biomedical sensing and imaging. However, it is impeded in practical applications by its specific high-energy laser source. Herein, a white-light responsive Ce3+-mediated toroidal energy migration downshifting topological core–shell structure NIR-IIb (1500–1700 nm) fluorescent probe is reported. It is found that Ce3+ doping enhances the NIR downshifting luminescence of the Ho3+ and Nd3+, thereby increasing the energy-transferred Yb3+ luminescence. The NaCeF4 core is able to further facilitate the crossrelaxation between the intermediate-shell layer of Er3+ and Ce3+ through the outward-to-inward core–shell topology, enhancing the 1527 nm luminescence to form the toroidal energy migration paradigm. Additionally, the luminescence of Er3⁺ exhibits strong temperature dependence, enabling superior temperature sensing under multiple light sources. Under low-power white light source, the relative sensitivity (Sr) can reach up to 0.57% K−1, with a minimum temperature uncertainty (δT) of 0.2 K. Moreover, portable light conversion using highly efficient white-light responsive emission in NIR-II region enables noninjectable intravenous imaging and food inspection. This toroidal energy migration strategy provides a new direction for lanthanide energy harvesting and multisource NIR applications.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.