{"title":"RGS12是盐酸戊乙奎醚的靶点,通过抑制Nrf2通路,在心肌缺血/再灌注损伤模型中增强氧化应激和铁凋亡。","authors":"Congna Zi, Yulei Wei, Ying Zhu, Juan Fan","doi":"10.3892/ijmm.2025.5493","DOIUrl":null,"url":null,"abstract":"<p><p>Regulator of G‑protein signaling 12 (RGS12) is a regulatory factor that is involved in various physiological processes. However, the role of RGS12 in myocardial ischemia/reperfusion injury (MIRI) currently remains unclear. The present study established a mouse model of MIRI by ligating the left main coronary artery followed by reperfusion. In addition, mouse HL‑1 cells were cultured in a hypoxic and serum‑free medium, followed by reoxygenation to establish an <i>in vitro</i> cell model of hypoxia/reoxygenation (H/R). Adenoviruses targeting RGS12 were subsequently used to either overexpress or silence RGS12 expression. RGS12 was highly expressed in both the myocardial tissues of mice with MIRI and HL‑1 cells subjected to H/R. The results from the <i>in vitro</i> experiments demonstrated that the knockdown of RGS12 reduced oxidative stress under a pathological environment, as indicated by decreased reactive oxygen species (ROS) levels and malondialdehyde activity and increased activities of superoxide dismutase and catalase. Furthermore, mice with MIRI and HL‑1 cells that underwent H/R stimulation exhibited increased ferroptosis, whereas RGS12 knockdown reversed these changes. These results showed that post‑RGS12 silencing the levels of Fe<sup>2+</sup> and lipid ROS were decreased, the expression levels of glutathione peroxidase 4 and cystine transporter solute carrier family 7 member 11 were increased and mitochondrial structure was improved by preventing the loss of the mitochondrial crest. Mechanistically, the nuclear factor erythroid 2‑related factor 2 (Nrf2) pathway with anti‑ferroptosis and anti‑oxidative stress capacities was activated by RGS12 knockdown. Conversely, RGS12 overexpression exerted the opposite effects both in vivo and in vitro. Notably, it was demonstrated that penehyclidine hydrochloride (PHC), known to block the MIRI process, decreased RGS12 expression levels both <i>in vivo</i> and <i>in vitro</i>, and RGS12 overexpression inhibited the therapeutic effects of PHC on MIRI. In conclusion, the present study demonstrated that RGS12, a target of PHC, potentially enhanced the progression of MIRI by promoting oxidative stress and ferroptosis, and this effect may involve the regulation of the Nrf2 pathway.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 3","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781519/pdf/","citationCount":"0","resultStr":"{\"title\":\"RGS12 is a target of penehyclidine hydrochloride that enhances oxidative stress and ferroptosis in a model of myocardial ischemia/reperfusion injury by inhibiting the Nrf2 pathway.\",\"authors\":\"Congna Zi, Yulei Wei, Ying Zhu, Juan Fan\",\"doi\":\"10.3892/ijmm.2025.5493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Regulator of G‑protein signaling 12 (RGS12) is a regulatory factor that is involved in various physiological processes. However, the role of RGS12 in myocardial ischemia/reperfusion injury (MIRI) currently remains unclear. The present study established a mouse model of MIRI by ligating the left main coronary artery followed by reperfusion. In addition, mouse HL‑1 cells were cultured in a hypoxic and serum‑free medium, followed by reoxygenation to establish an <i>in vitro</i> cell model of hypoxia/reoxygenation (H/R). Adenoviruses targeting RGS12 were subsequently used to either overexpress or silence RGS12 expression. RGS12 was highly expressed in both the myocardial tissues of mice with MIRI and HL‑1 cells subjected to H/R. The results from the <i>in vitro</i> experiments demonstrated that the knockdown of RGS12 reduced oxidative stress under a pathological environment, as indicated by decreased reactive oxygen species (ROS) levels and malondialdehyde activity and increased activities of superoxide dismutase and catalase. Furthermore, mice with MIRI and HL‑1 cells that underwent H/R stimulation exhibited increased ferroptosis, whereas RGS12 knockdown reversed these changes. These results showed that post‑RGS12 silencing the levels of Fe<sup>2+</sup> and lipid ROS were decreased, the expression levels of glutathione peroxidase 4 and cystine transporter solute carrier family 7 member 11 were increased and mitochondrial structure was improved by preventing the loss of the mitochondrial crest. Mechanistically, the nuclear factor erythroid 2‑related factor 2 (Nrf2) pathway with anti‑ferroptosis and anti‑oxidative stress capacities was activated by RGS12 knockdown. Conversely, RGS12 overexpression exerted the opposite effects both in vivo and in vitro. Notably, it was demonstrated that penehyclidine hydrochloride (PHC), known to block the MIRI process, decreased RGS12 expression levels both <i>in vivo</i> and <i>in vitro</i>, and RGS12 overexpression inhibited the therapeutic effects of PHC on MIRI. In conclusion, the present study demonstrated that RGS12, a target of PHC, potentially enhanced the progression of MIRI by promoting oxidative stress and ferroptosis, and this effect may involve the regulation of the Nrf2 pathway.</p>\",\"PeriodicalId\":14086,\"journal\":{\"name\":\"International journal of molecular medicine\",\"volume\":\"55 3\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781519/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of molecular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/ijmm.2025.5493\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2025.5493","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
G蛋白信号12 (regulatory of G - protein signaling, RGS12)是一种参与多种生理过程的调节因子。然而,RGS12在心肌缺血/再灌注损伤(MIRI)中的作用目前尚不清楚。本研究通过结扎左冠状动脉主干再灌注建立小鼠MIRI模型。此外,将小鼠HL - 1细胞置于缺氧无血清培养基中培养,再氧合,建立体外缺氧/再氧合(H/R)细胞模型。随后使用靶向RGS12的腺病毒过表达或沉默RGS12的表达。RGS12在MIRI小鼠和HL - 1细胞H/R后的心肌组织中均有高表达。体外实验结果表明,在病理环境下,RGS12基因敲低可降低氧化应激,表现为活性氧(ROS)水平和丙二醛活性降低,超氧化物歧化酶和过氧化氢酶活性升高。此外,MIRI和HL - 1细胞受到H/R刺激的小鼠表现出铁下垂增加,而RGS12敲低逆转了这些变化。这些结果表明,RGS12沉默后,Fe2+和脂质ROS水平降低,谷胱甘肽过氧化物酶4和胱氨酸转运体溶质载体家族7成员11的表达水平升高,线粒体结构通过防止线粒体嵴的丢失而得到改善。机制上,RGS12敲低激活了具有抗铁凋亡和抗氧化应激能力的核因子红细胞2相关因子2 (Nrf2)通路。相反,RGS12过表达在体内和体外均发挥相反的作用。值得注意的是,研究表明,已知阻断MIRI过程的盐酸戊乙基醚(PHC)在体内和体外都降低了RGS12的表达水平,RGS12过表达抑制了PHC对MIRI的治疗作用。综上所述,本研究表明,PHC的靶点RGS12可能通过促进氧化应激和铁凋亡来促进MIRI的进展,这种作用可能与Nrf2通路的调节有关。
RGS12 is a target of penehyclidine hydrochloride that enhances oxidative stress and ferroptosis in a model of myocardial ischemia/reperfusion injury by inhibiting the Nrf2 pathway.
Regulator of G‑protein signaling 12 (RGS12) is a regulatory factor that is involved in various physiological processes. However, the role of RGS12 in myocardial ischemia/reperfusion injury (MIRI) currently remains unclear. The present study established a mouse model of MIRI by ligating the left main coronary artery followed by reperfusion. In addition, mouse HL‑1 cells were cultured in a hypoxic and serum‑free medium, followed by reoxygenation to establish an in vitro cell model of hypoxia/reoxygenation (H/R). Adenoviruses targeting RGS12 were subsequently used to either overexpress or silence RGS12 expression. RGS12 was highly expressed in both the myocardial tissues of mice with MIRI and HL‑1 cells subjected to H/R. The results from the in vitro experiments demonstrated that the knockdown of RGS12 reduced oxidative stress under a pathological environment, as indicated by decreased reactive oxygen species (ROS) levels and malondialdehyde activity and increased activities of superoxide dismutase and catalase. Furthermore, mice with MIRI and HL‑1 cells that underwent H/R stimulation exhibited increased ferroptosis, whereas RGS12 knockdown reversed these changes. These results showed that post‑RGS12 silencing the levels of Fe2+ and lipid ROS were decreased, the expression levels of glutathione peroxidase 4 and cystine transporter solute carrier family 7 member 11 were increased and mitochondrial structure was improved by preventing the loss of the mitochondrial crest. Mechanistically, the nuclear factor erythroid 2‑related factor 2 (Nrf2) pathway with anti‑ferroptosis and anti‑oxidative stress capacities was activated by RGS12 knockdown. Conversely, RGS12 overexpression exerted the opposite effects both in vivo and in vitro. Notably, it was demonstrated that penehyclidine hydrochloride (PHC), known to block the MIRI process, decreased RGS12 expression levels both in vivo and in vitro, and RGS12 overexpression inhibited the therapeutic effects of PHC on MIRI. In conclusion, the present study demonstrated that RGS12, a target of PHC, potentially enhanced the progression of MIRI by promoting oxidative stress and ferroptosis, and this effect may involve the regulation of the Nrf2 pathway.
期刊介绍:
The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality.
The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research.
All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.