用图神经网络解释轻度认知障碍进展的因果关系。

Arman Behnam, Muskan Garg, Xingyi Liu, Maria Vassilaki, Jennifer St Sauver, Ronald C Petersen, Sunghwan Sohn
{"title":"用图神经网络解释轻度认知障碍进展的因果关系。","authors":"Arman Behnam, Muskan Garg, Xingyi Liu, Maria Vassilaki, Jennifer St Sauver, Ronald C Petersen, Sunghwan Sohn","doi":"10.1109/bibm62325.2024.10822848","DOIUrl":null,"url":null,"abstract":"<p><p>Mild Cognitive Impairment (MCI) is a transitional stage between normal cognitive aging and dementia. Some individuals with MCI revert to normal, while others progress to dementia. There are limited studies using explainable artificial intelligence on longitudinal data, particularly including genotypes, biomarkers and chronic diseases, to explore these differences. This study introduces a novel approach to understanding MCI progression using explainable graph neural networks. Utilizing longitudinal temporal data, we constructed a comprehensive graph representation of each individual in the study cohort. Our temporal graph convolutional network achieved 72.4% accuracy in predicting MCI transitions, while our causal explanation method outperformed existing explanation techniques in stability, accuracy, and faithfulness. We identified a causal subgraph with informative variables including hypertension, arrhythmia, congestive heart failure, coronary artery disease, stroke, lipid-related issues, and sex.</p>","PeriodicalId":74563,"journal":{"name":"Proceedings. IEEE International Conference on Bioinformatics and Biomedicine","volume":"2024 ","pages":"6349-6355"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803575/pdf/","citationCount":"0","resultStr":"{\"title\":\"Causal Explanation from Mild Cognitive Impairment Progression using Graph Neural Networks.\",\"authors\":\"Arman Behnam, Muskan Garg, Xingyi Liu, Maria Vassilaki, Jennifer St Sauver, Ronald C Petersen, Sunghwan Sohn\",\"doi\":\"10.1109/bibm62325.2024.10822848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mild Cognitive Impairment (MCI) is a transitional stage between normal cognitive aging and dementia. Some individuals with MCI revert to normal, while others progress to dementia. There are limited studies using explainable artificial intelligence on longitudinal data, particularly including genotypes, biomarkers and chronic diseases, to explore these differences. This study introduces a novel approach to understanding MCI progression using explainable graph neural networks. Utilizing longitudinal temporal data, we constructed a comprehensive graph representation of each individual in the study cohort. Our temporal graph convolutional network achieved 72.4% accuracy in predicting MCI transitions, while our causal explanation method outperformed existing explanation techniques in stability, accuracy, and faithfulness. We identified a causal subgraph with informative variables including hypertension, arrhythmia, congestive heart failure, coronary artery disease, stroke, lipid-related issues, and sex.</p>\",\"PeriodicalId\":74563,\"journal\":{\"name\":\"Proceedings. IEEE International Conference on Bioinformatics and Biomedicine\",\"volume\":\"2024 \",\"pages\":\"6349-6355\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803575/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Conference on Bioinformatics and Biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/bibm62325.2024.10822848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Bioinformatics and Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/bibm62325.2024.10822848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

轻度认知损伤(Mild Cognitive Impairment, MCI)是介于正常认知老化和痴呆之间的过渡阶段。一些轻度认知障碍患者会恢复正常,而另一些则会发展为痴呆症。利用可解释的人工智能对纵向数据(特别是包括基因型、生物标志物和慢性疾病)进行的研究有限,以探索这些差异。本研究介绍了一种使用可解释图神经网络来理解MCI进展的新方法。利用纵向时间数据,我们构建了研究队列中每个个体的综合图表。我们的时间图卷积网络在预测MCI转变方面达到了72.4%的准确率,而我们的因果解释方法在稳定性、准确性和可信度方面优于现有的解释技术。我们确定了一个包含信息变量的因果子图,包括高血压、心律失常、充血性心力衰竭、冠状动脉疾病、中风、脂质相关问题和性别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Causal Explanation from Mild Cognitive Impairment Progression using Graph Neural Networks.

Mild Cognitive Impairment (MCI) is a transitional stage between normal cognitive aging and dementia. Some individuals with MCI revert to normal, while others progress to dementia. There are limited studies using explainable artificial intelligence on longitudinal data, particularly including genotypes, biomarkers and chronic diseases, to explore these differences. This study introduces a novel approach to understanding MCI progression using explainable graph neural networks. Utilizing longitudinal temporal data, we constructed a comprehensive graph representation of each individual in the study cohort. Our temporal graph convolutional network achieved 72.4% accuracy in predicting MCI transitions, while our causal explanation method outperformed existing explanation techniques in stability, accuracy, and faithfulness. We identified a causal subgraph with informative variables including hypertension, arrhythmia, congestive heart failure, coronary artery disease, stroke, lipid-related issues, and sex.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信