RhoA-ROCK信号在良性前列腺增生中的作用

IF 3.4 3区 生物学 Q3 CELL BIOLOGY
Shidong Shan, Min Su
{"title":"RhoA-ROCK信号在良性前列腺增生中的作用","authors":"Shidong Shan, Min Su","doi":"10.1007/s13577-025-01179-x","DOIUrl":null,"url":null,"abstract":"<p><p>Benign prostatic hyperplasia (BPH) is a common urological disease in middle-aged and elderly men. The main pathological mechanisms of BPH include static factors that increase prostate volume and dynamic factors that increase prostate tension. The RhoA/ROCK signaling pathway is a classical pathway that regulates cell contraction, migration, and growth. In this review, we summarize the potential role of RhoA/ROCK signaling in the development of BPH. The RhoA/ROCK signaling pathway can enhance the contraction of prostate smooth muscle through the Ca<sup>2+</sup> sensitization pathway and increase passive tension in the prostate through tissue fibrosis. Additionally, RhoA/ROCK signaling promotes cell proliferation by regulating cell division and may influence apoptosis by affecting the actin cytoskeleton. Furthermore, risk factors, such as inflammation, metabolic syndrome, and hormonal changes, can upregulate RhoA/ROCK signaling, which in turn promotes these risk factors, eventually leading to the development of BPH. Given the role of RhoA/ROCK signaling in regulating multiple pathogenic factors of BPH, this pathway represents a promising molecular target for BPH treatment and warrants further study.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":"38 2","pages":"48"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of RhoA-ROCK signaling in benign prostatic hyperplasia: a review.\",\"authors\":\"Shidong Shan, Min Su\",\"doi\":\"10.1007/s13577-025-01179-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Benign prostatic hyperplasia (BPH) is a common urological disease in middle-aged and elderly men. The main pathological mechanisms of BPH include static factors that increase prostate volume and dynamic factors that increase prostate tension. The RhoA/ROCK signaling pathway is a classical pathway that regulates cell contraction, migration, and growth. In this review, we summarize the potential role of RhoA/ROCK signaling in the development of BPH. The RhoA/ROCK signaling pathway can enhance the contraction of prostate smooth muscle through the Ca<sup>2+</sup> sensitization pathway and increase passive tension in the prostate through tissue fibrosis. Additionally, RhoA/ROCK signaling promotes cell proliferation by regulating cell division and may influence apoptosis by affecting the actin cytoskeleton. Furthermore, risk factors, such as inflammation, metabolic syndrome, and hormonal changes, can upregulate RhoA/ROCK signaling, which in turn promotes these risk factors, eventually leading to the development of BPH. Given the role of RhoA/ROCK signaling in regulating multiple pathogenic factors of BPH, this pathway represents a promising molecular target for BPH treatment and warrants further study.</p>\",\"PeriodicalId\":49194,\"journal\":{\"name\":\"Human Cell\",\"volume\":\"38 2\",\"pages\":\"48\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13577-025-01179-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-025-01179-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

良性前列腺增生(BPH)是中老年男性泌尿系统常见病。BPH的主要病理机制包括增加前列腺体积的静态因素和增加前列腺张力的动态因素。RhoA/ROCK信号通路是调控细胞收缩、迁移和生长的经典信号通路。在这篇综述中,我们总结了RhoA/ROCK信号在BPH发展中的潜在作用。RhoA/ROCK信号通路通过Ca2+敏化途径增强前列腺平滑肌收缩,通过组织纤维化增加前列腺被动张力。此外,RhoA/ROCK信号通过调节细胞分裂促进细胞增殖,并可能通过影响肌动蛋白细胞骨架影响细胞凋亡。此外,炎症、代谢综合征和激素变化等危险因素可上调RhoA/ROCK信号,从而促进这些危险因素,最终导致BPH的发展。鉴于RhoA/ROCK信号通路在BPH多种致病因子调控中的作用,该通路是BPH治疗的一个有希望的分子靶点,值得进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The role of RhoA-ROCK signaling in benign prostatic hyperplasia: a review.

Benign prostatic hyperplasia (BPH) is a common urological disease in middle-aged and elderly men. The main pathological mechanisms of BPH include static factors that increase prostate volume and dynamic factors that increase prostate tension. The RhoA/ROCK signaling pathway is a classical pathway that regulates cell contraction, migration, and growth. In this review, we summarize the potential role of RhoA/ROCK signaling in the development of BPH. The RhoA/ROCK signaling pathway can enhance the contraction of prostate smooth muscle through the Ca2+ sensitization pathway and increase passive tension in the prostate through tissue fibrosis. Additionally, RhoA/ROCK signaling promotes cell proliferation by regulating cell division and may influence apoptosis by affecting the actin cytoskeleton. Furthermore, risk factors, such as inflammation, metabolic syndrome, and hormonal changes, can upregulate RhoA/ROCK signaling, which in turn promotes these risk factors, eventually leading to the development of BPH. Given the role of RhoA/ROCK signaling in regulating multiple pathogenic factors of BPH, this pathway represents a promising molecular target for BPH treatment and warrants further study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Cell
Human Cell CELL BIOLOGY-
CiteScore
5.90
自引率
2.30%
发文量
176
审稿时长
4.5 months
期刊介绍: Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well. Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format. Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信