Ryan M Lang, Riddhi Chawla, Sugandha Patel, Charles K Abrams, Rick T Dobrowsky
{"title":"Cemdomespib治疗减缓charco - marie - tooth 1X病R75W-Connexin 32动物模型的神经肌肉无力和脱髓鞘的进展","authors":"Ryan M Lang, Riddhi Chawla, Sugandha Patel, Charles K Abrams, Rick T Dobrowsky","doi":"10.1021/acsptsci.4c00464","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations in connexin 32 (Cx32) are a common cause of Charcot-Marie-Tooth 1X (CMT1X) disease, an inherited peripheral neuropathy characterized by progressive neuromuscular weakness and demyelination. There are no approved pharmacologic therapies for CMT1X, and identifying new treatments that slow the onset and severity of neuromuscular decline may aid disease management. Cemdomespib is an orally bioavailable small molecule that improved demyelination and neuromuscular junction (NMJ) morphology in mice lacking Cx32 expression. However, whether a similar efficacy may manifest in models of CMT1X arising from Cx32 mutations that cause the organellar accumulation of the protein was unclear. Additionally, it was unclear whether cemdomespib therapy slowed the rate of demyelination/NMJ degeneration or stabilized nerve and NMJ morphology to levels present at the initiation of drug therapy. To address these issues, 4-month-old R75W-Cx32 mice, which accumulate the mutant Cx32 in golgi, were treated for 0, 10, or 20 weeks with 0 or 3 mg/kg cemdomespib. Grip strength, motor nerve conduction velocity (MNCV), femoral nerve myelination, and NMJ morphology were quantified. Daily drug therapy significantly slowed the decline in grip strength over the course of treatment, while 20 weeks of drug treatment significantly improved MNCV and decreased the g-ratio and the number of thinly myelinated femoral nerve axons. Similarly, 20 weeks of cemdomespib therapy improved the NMJ morphology and the overlap between presynaptic (synaptophysin) and postsynaptic (α-bungarotoxin) markers. These data show that cemdomespib therapy slows the rate of neuromuscular decline and demyelination and may present a disease-modifying approach for patients with gain-of-function Cx32 mutations.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"8 1","pages":"124-135"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729424/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cemdomespib Therapy Slows the Progression of Neuromuscular Weakness and Demyelination in the R75W-Connexin 32 Animal Model of Charcot-Marie-Tooth 1X Disease.\",\"authors\":\"Ryan M Lang, Riddhi Chawla, Sugandha Patel, Charles K Abrams, Rick T Dobrowsky\",\"doi\":\"10.1021/acsptsci.4c00464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mutations in connexin 32 (Cx32) are a common cause of Charcot-Marie-Tooth 1X (CMT1X) disease, an inherited peripheral neuropathy characterized by progressive neuromuscular weakness and demyelination. There are no approved pharmacologic therapies for CMT1X, and identifying new treatments that slow the onset and severity of neuromuscular decline may aid disease management. Cemdomespib is an orally bioavailable small molecule that improved demyelination and neuromuscular junction (NMJ) morphology in mice lacking Cx32 expression. However, whether a similar efficacy may manifest in models of CMT1X arising from Cx32 mutations that cause the organellar accumulation of the protein was unclear. Additionally, it was unclear whether cemdomespib therapy slowed the rate of demyelination/NMJ degeneration or stabilized nerve and NMJ morphology to levels present at the initiation of drug therapy. To address these issues, 4-month-old R75W-Cx32 mice, which accumulate the mutant Cx32 in golgi, were treated for 0, 10, or 20 weeks with 0 or 3 mg/kg cemdomespib. Grip strength, motor nerve conduction velocity (MNCV), femoral nerve myelination, and NMJ morphology were quantified. Daily drug therapy significantly slowed the decline in grip strength over the course of treatment, while 20 weeks of drug treatment significantly improved MNCV and decreased the g-ratio and the number of thinly myelinated femoral nerve axons. Similarly, 20 weeks of cemdomespib therapy improved the NMJ morphology and the overlap between presynaptic (synaptophysin) and postsynaptic (α-bungarotoxin) markers. These data show that cemdomespib therapy slows the rate of neuromuscular decline and demyelination and may present a disease-modifying approach for patients with gain-of-function Cx32 mutations.</p>\",\"PeriodicalId\":36426,\"journal\":{\"name\":\"ACS Pharmacology and Translational Science\",\"volume\":\"8 1\",\"pages\":\"124-135\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729424/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Pharmacology and Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsptsci.4c00464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/10 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsptsci.4c00464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/10 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
摘要
连接蛋白32 (Cx32)突变是导致charco - marie - tooth 1X (CMT1X)病的常见原因,CMT1X是一种遗传性周围神经病变,以进行性神经肌肉无力和脱髓鞘为特征。目前还没有批准的CMT1X药物治疗方法,确定新的治疗方法可以减缓神经肌肉衰退的发病和严重程度,这可能有助于疾病的管理。Cemdomespib是一种口服生物可利用的小分子,可改善缺乏Cx32表达的小鼠脱髓鞘和神经肌肉连接(NMJ)形态。然而,在由Cx32突变引起的CMT1X模型中是否表现出类似的功效尚不清楚,Cx32突变导致了该蛋白的细胞器积聚。此外,尚不清楚cemdomespib治疗是否减缓了脱髓鞘/NMJ变性的速度,或将神经和NMJ形态稳定到药物治疗开始时的水平。为了解决这些问题,在高尔基体中积累突变Cx32的4月龄R75W-Cx32小鼠,分别用0或3 mg/kg的水泥吡脲治疗0、10或20周。握力、运动神经传导速度(MNCV)、股神经髓鞘形成和NMJ形态进行量化。每日药物治疗显著减缓了治疗过程中握力的下降,而20周药物治疗显著改善了MNCV,降低了g比和细髓鞘股神经轴突的数量。同样,20周的cemdomespib治疗改善了NMJ形态和突触前(synaptophysin)和突触后(α-bungarotoxin)标记之间的重叠。这些数据表明,cemdomespib治疗可以减缓神经肌肉衰退和脱髓鞘的速度,并可能为功能获得性Cx32突变患者提供一种疾病改善方法。
Cemdomespib Therapy Slows the Progression of Neuromuscular Weakness and Demyelination in the R75W-Connexin 32 Animal Model of Charcot-Marie-Tooth 1X Disease.
Mutations in connexin 32 (Cx32) are a common cause of Charcot-Marie-Tooth 1X (CMT1X) disease, an inherited peripheral neuropathy characterized by progressive neuromuscular weakness and demyelination. There are no approved pharmacologic therapies for CMT1X, and identifying new treatments that slow the onset and severity of neuromuscular decline may aid disease management. Cemdomespib is an orally bioavailable small molecule that improved demyelination and neuromuscular junction (NMJ) morphology in mice lacking Cx32 expression. However, whether a similar efficacy may manifest in models of CMT1X arising from Cx32 mutations that cause the organellar accumulation of the protein was unclear. Additionally, it was unclear whether cemdomespib therapy slowed the rate of demyelination/NMJ degeneration or stabilized nerve and NMJ morphology to levels present at the initiation of drug therapy. To address these issues, 4-month-old R75W-Cx32 mice, which accumulate the mutant Cx32 in golgi, were treated for 0, 10, or 20 weeks with 0 or 3 mg/kg cemdomespib. Grip strength, motor nerve conduction velocity (MNCV), femoral nerve myelination, and NMJ morphology were quantified. Daily drug therapy significantly slowed the decline in grip strength over the course of treatment, while 20 weeks of drug treatment significantly improved MNCV and decreased the g-ratio and the number of thinly myelinated femoral nerve axons. Similarly, 20 weeks of cemdomespib therapy improved the NMJ morphology and the overlap between presynaptic (synaptophysin) and postsynaptic (α-bungarotoxin) markers. These data show that cemdomespib therapy slows the rate of neuromuscular decline and demyelination and may present a disease-modifying approach for patients with gain-of-function Cx32 mutations.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.