{"title":"室温自催化快速聚合法制备电子皮肤传感器用环境稳定自粘导电纤维素水凝胶。","authors":"Shiyu Zong, Xiaolu Wen, Fuhou Lei, Liwei Zhu, Jianxin Jiang, Jiufang Duan","doi":"10.1016/j.ijbiomac.2025.139999","DOIUrl":null,"url":null,"abstract":"<p><p>Bio-based conductive hydrogels are catching a widespread attention in the field of flexible sensors and human-machine interface interaction. Here, an enhanced autocatalytic system constructed from dopamine-encapsulated cellulose nanofibers (DA@CNF) and Cu<sup>2+</sup> in a glycerol-water binary solvent achieved fast auto-polymerization of hydrogels within 60 s. X-ray photoelectron spectra (XPS), UV-vis spectrum (UV), Cyclic Voltammetry (CV) and electron paramagnetic resonance (EPR) were used to characterize the autocatalytic system. The hydrogel obtained has excellent mechanical properties (strain >900 %, compressive strength >800 kPa, toughness >700 kJ/m<sup>3</sup>), reproducible adhesive properties (>10 times), excellent high and low temperature (-20-60 °C) adaptability and stability. And the excellent electrical conductivity endows the hydrogel with high strain sensitivity (GF = 5.15) over a wide strain range (400 %). The excellent overall performance ensures the stability and accuracy of the hydrogel as a flexible electronic skin for signal detection during human-computer interface interaction. This work contributes a new research strategy for the rational design and green development of biomass-based conductive hydrogel sensors.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"139999"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of environmentally stable self-adhesive conductive cellulose hydrogel for electronic skin sensor via autocatalytic fast polymerization strategy at room temperature.\",\"authors\":\"Shiyu Zong, Xiaolu Wen, Fuhou Lei, Liwei Zhu, Jianxin Jiang, Jiufang Duan\",\"doi\":\"10.1016/j.ijbiomac.2025.139999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bio-based conductive hydrogels are catching a widespread attention in the field of flexible sensors and human-machine interface interaction. Here, an enhanced autocatalytic system constructed from dopamine-encapsulated cellulose nanofibers (DA@CNF) and Cu<sup>2+</sup> in a glycerol-water binary solvent achieved fast auto-polymerization of hydrogels within 60 s. X-ray photoelectron spectra (XPS), UV-vis spectrum (UV), Cyclic Voltammetry (CV) and electron paramagnetic resonance (EPR) were used to characterize the autocatalytic system. The hydrogel obtained has excellent mechanical properties (strain >900 %, compressive strength >800 kPa, toughness >700 kJ/m<sup>3</sup>), reproducible adhesive properties (>10 times), excellent high and low temperature (-20-60 °C) adaptability and stability. And the excellent electrical conductivity endows the hydrogel with high strain sensitivity (GF = 5.15) over a wide strain range (400 %). The excellent overall performance ensures the stability and accuracy of the hydrogel as a flexible electronic skin for signal detection during human-computer interface interaction. This work contributes a new research strategy for the rational design and green development of biomass-based conductive hydrogel sensors.</p>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\" \",\"pages\":\"139999\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijbiomac.2025.139999\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.139999","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Construction of environmentally stable self-adhesive conductive cellulose hydrogel for electronic skin sensor via autocatalytic fast polymerization strategy at room temperature.
Bio-based conductive hydrogels are catching a widespread attention in the field of flexible sensors and human-machine interface interaction. Here, an enhanced autocatalytic system constructed from dopamine-encapsulated cellulose nanofibers (DA@CNF) and Cu2+ in a glycerol-water binary solvent achieved fast auto-polymerization of hydrogels within 60 s. X-ray photoelectron spectra (XPS), UV-vis spectrum (UV), Cyclic Voltammetry (CV) and electron paramagnetic resonance (EPR) were used to characterize the autocatalytic system. The hydrogel obtained has excellent mechanical properties (strain >900 %, compressive strength >800 kPa, toughness >700 kJ/m3), reproducible adhesive properties (>10 times), excellent high and low temperature (-20-60 °C) adaptability and stability. And the excellent electrical conductivity endows the hydrogel with high strain sensitivity (GF = 5.15) over a wide strain range (400 %). The excellent overall performance ensures the stability and accuracy of the hydrogel as a flexible electronic skin for signal detection during human-computer interface interaction. This work contributes a new research strategy for the rational design and green development of biomass-based conductive hydrogel sensors.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.