Yalin Hu, Jie Wu, Haiyan Luo, Guanqi Su, Xiangxi Meng, Liyu Liu, Guo Chen
{"title":"用近红外光对注入润滑剂表面的多个墨滴进行平行操作","authors":"Yalin Hu, Jie Wu, Haiyan Luo, Guanqi Su, Xiangxi Meng, Liyu Liu, Guo Chen","doi":"10.1063/5.0241263","DOIUrl":null,"url":null,"abstract":"Previous studies on light-driven droplet transport often use light to heat the substrate to generate a temperature difference, thereby changing the wettability or surface tension at two ends of a droplet, to propel the droplet forward, and not much attention has been paid to the droplets with photothermal properties. Herein, we introduce a method of ink droplet manipulation via near infrared light-driven on lubricant infused surfaces. Rather than heating the substrate itself, this method uses near-infrared light to irradiate one end of an ink droplet, creating a temperature gradient inside it and forming a Marangoni flow that pushes the droplet forward. It is demonstrated that the ink droplets would experience two stages during sliding, and the movement ability of the ink droplets depends on their absorbance and size; specifically, the average acceleration and steady velocity of the droplets are both positively correlated with their absorbance and negatively correlated with their volume. The work not only proves that the method can realize conventional individual droplet manipulation such as controllable transport along arbitrary paths, but also proposes a unique customized transport and merging strategy for multiple ink droplets. This investigation offers a simple and versatile manipulation approach for ink droplets, and the relevant results have potential applications in the fields of precise maneuver of light-driven droplets and droplet-based inkjet printing.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"68 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel manipulation of multiple ink droplets via near-infrared light on lubricant infused surface\",\"authors\":\"Yalin Hu, Jie Wu, Haiyan Luo, Guanqi Su, Xiangxi Meng, Liyu Liu, Guo Chen\",\"doi\":\"10.1063/5.0241263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous studies on light-driven droplet transport often use light to heat the substrate to generate a temperature difference, thereby changing the wettability or surface tension at two ends of a droplet, to propel the droplet forward, and not much attention has been paid to the droplets with photothermal properties. Herein, we introduce a method of ink droplet manipulation via near infrared light-driven on lubricant infused surfaces. Rather than heating the substrate itself, this method uses near-infrared light to irradiate one end of an ink droplet, creating a temperature gradient inside it and forming a Marangoni flow that pushes the droplet forward. It is demonstrated that the ink droplets would experience two stages during sliding, and the movement ability of the ink droplets depends on their absorbance and size; specifically, the average acceleration and steady velocity of the droplets are both positively correlated with their absorbance and negatively correlated with their volume. The work not only proves that the method can realize conventional individual droplet manipulation such as controllable transport along arbitrary paths, but also proposes a unique customized transport and merging strategy for multiple ink droplets. This investigation offers a simple and versatile manipulation approach for ink droplets, and the relevant results have potential applications in the fields of precise maneuver of light-driven droplets and droplet-based inkjet printing.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0241263\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0241263","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Parallel manipulation of multiple ink droplets via near-infrared light on lubricant infused surface
Previous studies on light-driven droplet transport often use light to heat the substrate to generate a temperature difference, thereby changing the wettability or surface tension at two ends of a droplet, to propel the droplet forward, and not much attention has been paid to the droplets with photothermal properties. Herein, we introduce a method of ink droplet manipulation via near infrared light-driven on lubricant infused surfaces. Rather than heating the substrate itself, this method uses near-infrared light to irradiate one end of an ink droplet, creating a temperature gradient inside it and forming a Marangoni flow that pushes the droplet forward. It is demonstrated that the ink droplets would experience two stages during sliding, and the movement ability of the ink droplets depends on their absorbance and size; specifically, the average acceleration and steady velocity of the droplets are both positively correlated with their absorbance and negatively correlated with their volume. The work not only proves that the method can realize conventional individual droplet manipulation such as controllable transport along arbitrary paths, but also proposes a unique customized transport and merging strategy for multiple ink droplets. This investigation offers a simple and versatile manipulation approach for ink droplets, and the relevant results have potential applications in the fields of precise maneuver of light-driven droplets and droplet-based inkjet printing.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.