Frederik Wienen, Robin Nilson, Ellen Allmendinger, Sarah Peters, Thomas F E Barth, Stefan Kochanek, Lea Krutzke
{"title":"具有降低表面电荷的溶瘤性HAdV-5结合了降低毒性和提高肿瘤靶向性。","authors":"Frederik Wienen, Robin Nilson, Ellen Allmendinger, Sarah Peters, Thomas F E Barth, Stefan Kochanek, Lea Krutzke","doi":"10.1016/j.omton.2024.200909","DOIUrl":null,"url":null,"abstract":"<p><p>Human adenovirus type 5 (HAdV-5)-based oncolytic viruses hold significant promise for anti-cancer therapy. However, poor tumor-targeting and off-target organ transduction after systemic administration limit their therapeutic efficacy. In addition, the strong liver tropism of HAdV-5-based vectors poses the risk of hepatotoxicity. By genetic modification of the major capsid protein hexon we generated a HAdV-5-based oncolytic vector (HAdV-5-HexPos3) with reduced negative surface charge. Coxsackie and adenovirus receptor (CAR) binding-ablated (ΔCAR) HAdV-5-HexPos3_ΔCAR exhibited superior and CAR-independent transduction of various cancer cell lines <i>in vitro</i>, further enhanced in the presence of HAdV-5 naive murine plasma. Upon intravenous administration into tumor-bearing immunodeficient NSG mice, replication-deficient HAdV-5-HexPos3_ΔCAR vector particles showed significantly reduced off-target organ tropism in all tissues analyzed, including the liver. Moreover, we detected a significantly increased intratumoral vector load for HAdV-5-HexPos3_ΔCAR, leading to a 29-fold elevated tumor-to-liver ratio compared with a control vector with unmodified hexon. Intravenous injection of a conditionally replicating hexon-unmodified control vector induced severe hepatotoxicity in tumor-bearing NSG mice, while a conditionally replicating HAdV-5-HexPos3_ΔCAR vector was well tolerated and resulted in intratumoral vector presence for up to 56 days. HAdV-5-HexPos3_ΔCAR represents a promising vector platform for the generation of HAdV-5-based oncolytic viruses with reduced systemic toxicity and improved therapeutic efficacy.</p>","PeriodicalId":519884,"journal":{"name":"Molecular therapy. Oncology","volume":"32 4","pages":"200909"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699628/pdf/","citationCount":"0","resultStr":"{\"title\":\"An oncolytic HAdV-5 with reduced surface charge combines diminished toxicity and improved tumor targeting.\",\"authors\":\"Frederik Wienen, Robin Nilson, Ellen Allmendinger, Sarah Peters, Thomas F E Barth, Stefan Kochanek, Lea Krutzke\",\"doi\":\"10.1016/j.omton.2024.200909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human adenovirus type 5 (HAdV-5)-based oncolytic viruses hold significant promise for anti-cancer therapy. However, poor tumor-targeting and off-target organ transduction after systemic administration limit their therapeutic efficacy. In addition, the strong liver tropism of HAdV-5-based vectors poses the risk of hepatotoxicity. By genetic modification of the major capsid protein hexon we generated a HAdV-5-based oncolytic vector (HAdV-5-HexPos3) with reduced negative surface charge. Coxsackie and adenovirus receptor (CAR) binding-ablated (ΔCAR) HAdV-5-HexPos3_ΔCAR exhibited superior and CAR-independent transduction of various cancer cell lines <i>in vitro</i>, further enhanced in the presence of HAdV-5 naive murine plasma. Upon intravenous administration into tumor-bearing immunodeficient NSG mice, replication-deficient HAdV-5-HexPos3_ΔCAR vector particles showed significantly reduced off-target organ tropism in all tissues analyzed, including the liver. Moreover, we detected a significantly increased intratumoral vector load for HAdV-5-HexPos3_ΔCAR, leading to a 29-fold elevated tumor-to-liver ratio compared with a control vector with unmodified hexon. Intravenous injection of a conditionally replicating hexon-unmodified control vector induced severe hepatotoxicity in tumor-bearing NSG mice, while a conditionally replicating HAdV-5-HexPos3_ΔCAR vector was well tolerated and resulted in intratumoral vector presence for up to 56 days. HAdV-5-HexPos3_ΔCAR represents a promising vector platform for the generation of HAdV-5-based oncolytic viruses with reduced systemic toxicity and improved therapeutic efficacy.</p>\",\"PeriodicalId\":519884,\"journal\":{\"name\":\"Molecular therapy. Oncology\",\"volume\":\"32 4\",\"pages\":\"200909\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699628/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular therapy. Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.omton.2024.200909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/19 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular therapy. Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.omton.2024.200909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/19 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
An oncolytic HAdV-5 with reduced surface charge combines diminished toxicity and improved tumor targeting.
Human adenovirus type 5 (HAdV-5)-based oncolytic viruses hold significant promise for anti-cancer therapy. However, poor tumor-targeting and off-target organ transduction after systemic administration limit their therapeutic efficacy. In addition, the strong liver tropism of HAdV-5-based vectors poses the risk of hepatotoxicity. By genetic modification of the major capsid protein hexon we generated a HAdV-5-based oncolytic vector (HAdV-5-HexPos3) with reduced negative surface charge. Coxsackie and adenovirus receptor (CAR) binding-ablated (ΔCAR) HAdV-5-HexPos3_ΔCAR exhibited superior and CAR-independent transduction of various cancer cell lines in vitro, further enhanced in the presence of HAdV-5 naive murine plasma. Upon intravenous administration into tumor-bearing immunodeficient NSG mice, replication-deficient HAdV-5-HexPos3_ΔCAR vector particles showed significantly reduced off-target organ tropism in all tissues analyzed, including the liver. Moreover, we detected a significantly increased intratumoral vector load for HAdV-5-HexPos3_ΔCAR, leading to a 29-fold elevated tumor-to-liver ratio compared with a control vector with unmodified hexon. Intravenous injection of a conditionally replicating hexon-unmodified control vector induced severe hepatotoxicity in tumor-bearing NSG mice, while a conditionally replicating HAdV-5-HexPos3_ΔCAR vector was well tolerated and resulted in intratumoral vector presence for up to 56 days. HAdV-5-HexPos3_ΔCAR represents a promising vector platform for the generation of HAdV-5-based oncolytic viruses with reduced systemic toxicity and improved therapeutic efficacy.