用于生成分子构象的可转移图注意扩散模型。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Donghan Wang, Xu Dong, Xueyou Zhang, LiHong Hu
{"title":"用于生成分子构象的可转移图注意扩散模型。","authors":"Donghan Wang, Xu Dong, Xueyou Zhang, LiHong Hu","doi":"10.1093/bib/bbae676","DOIUrl":null,"url":null,"abstract":"<p><p>The diffusion generative model has achieved remarkable performance across various research fields. In this study, we propose a transferable graph attention diffusion model, GADIFF, for a molecular conformation generation task. With adopting multiple equivariant networks in the Markov chain, GADIFF adds GIN (Graph Isomorphism Network) to acquire local information of subgraphs with different edge types (atomic bonds, bond angle interactions, torsion angle interactions, long-range interactions) and applies MSA (Multi-head Self-attention) as noise attention mechanism to capture global molecular information, which improves the representative of features. In addition, we utilize MSA to calculate dynamic noise weights to boost molecular conformation noise prediction. Upon the improvements, GADIFF achieves competitive performance compared with recently reported state-of-the-art models in terms of generation diversity(COV-R, COV-P), accuracy (MAT-R, MAT-P), and property prediction for GEOM-QM9 and GEOM-Drugs datasets. In particular, on the GEOM-Drugs dataset, the average COV-R is improved by 3.75% compared with the best baseline model at a threshold (1.25 Å). Furthermore, a transfer model named GADIFF-NCI based on GADIFF is developed to generate conformations for noncovalent interaction (NCI) molecular systems. It takes GADIFF with GEOM-QM9 dataset as a pre-trained model, and incorporates a graph encoder for learning molecular vectors at the NCI molecular level. The resulting NCI molecular conformations are reasonable, as assessed by the evaluation of conformation and property predictions. This suggests that the proposed transferable model may hold noteworthy value for the study of multi-molecular conformations. The code and data of GADIFF is freely downloaded from https://github.com/WangDHg/GADIFF.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684900/pdf/","citationCount":"0","resultStr":"{\"title\":\"GADIFF: a transferable graph attention diffusion model for generating molecular conformations.\",\"authors\":\"Donghan Wang, Xu Dong, Xueyou Zhang, LiHong Hu\",\"doi\":\"10.1093/bib/bbae676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The diffusion generative model has achieved remarkable performance across various research fields. In this study, we propose a transferable graph attention diffusion model, GADIFF, for a molecular conformation generation task. With adopting multiple equivariant networks in the Markov chain, GADIFF adds GIN (Graph Isomorphism Network) to acquire local information of subgraphs with different edge types (atomic bonds, bond angle interactions, torsion angle interactions, long-range interactions) and applies MSA (Multi-head Self-attention) as noise attention mechanism to capture global molecular information, which improves the representative of features. In addition, we utilize MSA to calculate dynamic noise weights to boost molecular conformation noise prediction. Upon the improvements, GADIFF achieves competitive performance compared with recently reported state-of-the-art models in terms of generation diversity(COV-R, COV-P), accuracy (MAT-R, MAT-P), and property prediction for GEOM-QM9 and GEOM-Drugs datasets. In particular, on the GEOM-Drugs dataset, the average COV-R is improved by 3.75% compared with the best baseline model at a threshold (1.25 Å). Furthermore, a transfer model named GADIFF-NCI based on GADIFF is developed to generate conformations for noncovalent interaction (NCI) molecular systems. It takes GADIFF with GEOM-QM9 dataset as a pre-trained model, and incorporates a graph encoder for learning molecular vectors at the NCI molecular level. The resulting NCI molecular conformations are reasonable, as assessed by the evaluation of conformation and property predictions. This suggests that the proposed transferable model may hold noteworthy value for the study of multi-molecular conformations. The code and data of GADIFF is freely downloaded from https://github.com/WangDHg/GADIFF.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684900/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae676\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae676","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

扩散生成模型在各个研究领域都取得了令人瞩目的成就。在本研究中,我们针对分子构象生成任务提出了一种可移植的图注意扩散模型 GADIFF。GADIFF 采用马尔可夫链中的多个等价网络,增加了 GIN(图同构网络)来获取不同边类型(原子键、键角相互作用、扭转角相互作用、长程相互作用)子图的局部信息,并应用 MSA(多头自注意)作为噪声注意机制来捕捉全局分子信息,从而提高了特征的代表性。此外,我们还利用 MSA 计算动态噪声权重,以加强分子构象噪声预测。经过改进后,GADIFF 在生成多样性(COV-R、COV-P)、准确性(MAT-R、MAT-P)以及 GEOM-QM9 和 GEOM-Drugs 数据集的性质预测方面,与最近报道的最先进模型相比都取得了具有竞争力的性能。特别是在 GEOM-Drugs 数据集上,与阈值(1.25 Å)为 1 的最佳基线模型相比,平均 COV-R 提高了 3.75%。此外,还在 GADIFF 的基础上开发了一种名为 GADIFF-NCI 的转移模型,用于生成非共价相互作用(NCI)分子系统的构象。它将带有 GEOM-QM9 数据集的 GADIFF 作为预训练模型,并结合图编码器学习 NCI 分子水平的分子向量。通过对构象和性质预测的评估,得出的 NCI 分子构象是合理的。这表明,所提出的可转移模型可能对多分子构象研究具有重要价值。GADIFF 的代码和数据可从 https://github.com/WangDHg/GADIFF 免费下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GADIFF: a transferable graph attention diffusion model for generating molecular conformations.

The diffusion generative model has achieved remarkable performance across various research fields. In this study, we propose a transferable graph attention diffusion model, GADIFF, for a molecular conformation generation task. With adopting multiple equivariant networks in the Markov chain, GADIFF adds GIN (Graph Isomorphism Network) to acquire local information of subgraphs with different edge types (atomic bonds, bond angle interactions, torsion angle interactions, long-range interactions) and applies MSA (Multi-head Self-attention) as noise attention mechanism to capture global molecular information, which improves the representative of features. In addition, we utilize MSA to calculate dynamic noise weights to boost molecular conformation noise prediction. Upon the improvements, GADIFF achieves competitive performance compared with recently reported state-of-the-art models in terms of generation diversity(COV-R, COV-P), accuracy (MAT-R, MAT-P), and property prediction for GEOM-QM9 and GEOM-Drugs datasets. In particular, on the GEOM-Drugs dataset, the average COV-R is improved by 3.75% compared with the best baseline model at a threshold (1.25 Å). Furthermore, a transfer model named GADIFF-NCI based on GADIFF is developed to generate conformations for noncovalent interaction (NCI) molecular systems. It takes GADIFF with GEOM-QM9 dataset as a pre-trained model, and incorporates a graph encoder for learning molecular vectors at the NCI molecular level. The resulting NCI molecular conformations are reasonable, as assessed by the evaluation of conformation and property predictions. This suggests that the proposed transferable model may hold noteworthy value for the study of multi-molecular conformations. The code and data of GADIFF is freely downloaded from https://github.com/WangDHg/GADIFF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信