Hongbo Bao, Peng Ren, Xia Liang, Jiacheng Lai, Yan Bai, Yunpeng Liu, Zhonghua Lv, Jie Hu, Zeya Yan, Zihan Wang, Tingting Pu, Ruiyang Wang, Zhuo Hou, Peng Liang, Yinyan Wang
{"title":"脑转移的空间分布由脑微环境的异质性决定。","authors":"Hongbo Bao, Peng Ren, Xia Liang, Jiacheng Lai, Yan Bai, Yunpeng Liu, Zhonghua Lv, Jie Hu, Zeya Yan, Zihan Wang, Tingting Pu, Ruiyang Wang, Zhuo Hou, Peng Liang, Yinyan Wang","doi":"10.1002/hbm.70103","DOIUrl":null,"url":null,"abstract":"<p>It is now understood that brain metastases do not occur randomly but have distinct spatial patterns depending on the origin of the cancer. According to the “seed and soil” hypothesis, the final colonization of metastatic cells is the result of their adaptation to the altered environment. To investigate the most favorable microenvironment for brain metastasis, we analyzed neuroimaging data from 177 patients with breast cancer brain metastasis and 548 patients with lung cancer brain metastasis to create a replicable probabilistic map of metastatic locations. Additionally, we used population-based data from open repositories to generate brain atlases of diverse microenvironment features, including gene expression, functional connectivity, glucose metabolism, and neurotransmitter transporters/receptors. We then compared the spatial correlation between brain metastasis frequency and these features, after which we constructed a general linear model to identify the most significant variables that contributed to tumor location predilection. Our findings revealed that brain metastases from breast cancer and lung cancer had distinct radiographic characteristics and distribution patterns. Breast cancer tended to metastasize in brain regions with decreased expression of genes associated with immunity and metabolism and reduced levels of connectomic hubness and glucose metabolism. In contrast, lung cancer had a higher probability of metastasizing in regions with active metabolism. Moreover, neurotransmitter systems play various roles in determining tumor location. These results provide new insights into the adaptation of metastatic cells to the brain microenvironment and illustrate how factors on diverse biological scales can affect the colonization of brain metastases.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"45 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669001/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Spatial Distribution of Brain Metastasis Is Determined by the Heterogeneity of the Brain Microenvironment\",\"authors\":\"Hongbo Bao, Peng Ren, Xia Liang, Jiacheng Lai, Yan Bai, Yunpeng Liu, Zhonghua Lv, Jie Hu, Zeya Yan, Zihan Wang, Tingting Pu, Ruiyang Wang, Zhuo Hou, Peng Liang, Yinyan Wang\",\"doi\":\"10.1002/hbm.70103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is now understood that brain metastases do not occur randomly but have distinct spatial patterns depending on the origin of the cancer. According to the “seed and soil” hypothesis, the final colonization of metastatic cells is the result of their adaptation to the altered environment. To investigate the most favorable microenvironment for brain metastasis, we analyzed neuroimaging data from 177 patients with breast cancer brain metastasis and 548 patients with lung cancer brain metastasis to create a replicable probabilistic map of metastatic locations. Additionally, we used population-based data from open repositories to generate brain atlases of diverse microenvironment features, including gene expression, functional connectivity, glucose metabolism, and neurotransmitter transporters/receptors. We then compared the spatial correlation between brain metastasis frequency and these features, after which we constructed a general linear model to identify the most significant variables that contributed to tumor location predilection. Our findings revealed that brain metastases from breast cancer and lung cancer had distinct radiographic characteristics and distribution patterns. Breast cancer tended to metastasize in brain regions with decreased expression of genes associated with immunity and metabolism and reduced levels of connectomic hubness and glucose metabolism. In contrast, lung cancer had a higher probability of metastasizing in regions with active metabolism. Moreover, neurotransmitter systems play various roles in determining tumor location. These results provide new insights into the adaptation of metastatic cells to the brain microenvironment and illustrate how factors on diverse biological scales can affect the colonization of brain metastases.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"45 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669001/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70103\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70103","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
The Spatial Distribution of Brain Metastasis Is Determined by the Heterogeneity of the Brain Microenvironment
It is now understood that brain metastases do not occur randomly but have distinct spatial patterns depending on the origin of the cancer. According to the “seed and soil” hypothesis, the final colonization of metastatic cells is the result of their adaptation to the altered environment. To investigate the most favorable microenvironment for brain metastasis, we analyzed neuroimaging data from 177 patients with breast cancer brain metastasis and 548 patients with lung cancer brain metastasis to create a replicable probabilistic map of metastatic locations. Additionally, we used population-based data from open repositories to generate brain atlases of diverse microenvironment features, including gene expression, functional connectivity, glucose metabolism, and neurotransmitter transporters/receptors. We then compared the spatial correlation between brain metastasis frequency and these features, after which we constructed a general linear model to identify the most significant variables that contributed to tumor location predilection. Our findings revealed that brain metastases from breast cancer and lung cancer had distinct radiographic characteristics and distribution patterns. Breast cancer tended to metastasize in brain regions with decreased expression of genes associated with immunity and metabolism and reduced levels of connectomic hubness and glucose metabolism. In contrast, lung cancer had a higher probability of metastasizing in regions with active metabolism. Moreover, neurotransmitter systems play various roles in determining tumor location. These results provide new insights into the adaptation of metastatic cells to the brain microenvironment and illustrate how factors on diverse biological scales can affect the colonization of brain metastases.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.