近似R1和R2:临床加权MRI的定量方法。

IF 3.5 2区 医学 Q1 NEUROIMAGING
Shachar Moskovich, Oshrat Shtangel, Aviv A. Mezer
{"title":"近似R1和R2:临床加权MRI的定量方法。","authors":"Shachar Moskovich,&nbsp;Oshrat Shtangel,&nbsp;Aviv A. Mezer","doi":"10.1002/hbm.70102","DOIUrl":null,"url":null,"abstract":"<p>Weighted MRI images are widely used in clinical as well as open-source neuroimaging databases. Weighted images such as T1-weighted, T2-weighted, and proton density-weighted (T1w, T2w, and PDw, respectively) are used for evaluating the brain's macrostructure; however, their values cannot be used for microstructural analysis, as they lack physical meaning. Quantitative MRI (qMRI) relaxation rate parameters (e.g., R1 and R2) do contain microstructural physical meaning. Nevertheless, qMRI is rarely done in large-scale clinical databases. Currently, the weighted images ratio T1w/T2w is used as a quantifier to approximate the brain's microstructure. In this paper, we test three additional quantifiers that approximate quantitative maps, which can help bring quantitative MRI to the clinic for easy use. Following the signal equations and using simple mathematical operations, we combine the T1w, T2w, and PDw images to estimate the R1 and R2 maps. We find that two of these quantifiers (T1w/PDw and T1w/ln(T2w)) can approximate R1, and that (ln(T2w/PDw)) can approximate R2, in 3 datasets that were tested. We find that this approach also can be applied to T2w scans taken from widely available DTI (Diffusion Tensor Imaging) datasets. We tested these quantifiers on both in vitro phantom and in vivo human datasets. We found that the quantifiers accurately represent the quantitative parameters across datasets. Finally, we tested the quantifiers within a clinical context, and found that they are robust across datasets. Our work provides a simple pipeline to enhance the usability and quantitative accuracy of MRI weighted images.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"45 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70102","citationCount":"0","resultStr":"{\"title\":\"Approximating R1 and R2: A Quantitative Approach to Clinical Weighted MRI\",\"authors\":\"Shachar Moskovich,&nbsp;Oshrat Shtangel,&nbsp;Aviv A. Mezer\",\"doi\":\"10.1002/hbm.70102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Weighted MRI images are widely used in clinical as well as open-source neuroimaging databases. Weighted images such as T1-weighted, T2-weighted, and proton density-weighted (T1w, T2w, and PDw, respectively) are used for evaluating the brain's macrostructure; however, their values cannot be used for microstructural analysis, as they lack physical meaning. Quantitative MRI (qMRI) relaxation rate parameters (e.g., R1 and R2) do contain microstructural physical meaning. Nevertheless, qMRI is rarely done in large-scale clinical databases. Currently, the weighted images ratio T1w/T2w is used as a quantifier to approximate the brain's microstructure. In this paper, we test three additional quantifiers that approximate quantitative maps, which can help bring quantitative MRI to the clinic for easy use. Following the signal equations and using simple mathematical operations, we combine the T1w, T2w, and PDw images to estimate the R1 and R2 maps. We find that two of these quantifiers (T1w/PDw and T1w/ln(T2w)) can approximate R1, and that (ln(T2w/PDw)) can approximate R2, in 3 datasets that were tested. We find that this approach also can be applied to T2w scans taken from widely available DTI (Diffusion Tensor Imaging) datasets. We tested these quantifiers on both in vitro phantom and in vivo human datasets. We found that the quantifiers accurately represent the quantitative parameters across datasets. Finally, we tested the quantifiers within a clinical context, and found that they are robust across datasets. Our work provides a simple pipeline to enhance the usability and quantitative accuracy of MRI weighted images.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"45 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70102\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70102\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70102","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

加权MRI图像广泛应用于临床和开源神经影像学数据库。加权图像,如t1加权、t2加权和质子密度加权(分别为T1w、T2w和PDw)用于评估大脑宏观结构;然而,它们的值不能用于微观结构分析,因为它们缺乏物理意义。定量MRI (qMRI)弛豫速率参数(如R1和R2)确实包含微观结构物理意义。然而,qMRI很少在大规模的临床数据库中进行。目前,常用加权图像比T1w/T2w作为量化器来近似大脑的微观结构。在本文中,我们测试了另外三个近似定量图的量词,这可以帮助将定量MRI带入临床,便于使用。根据信号方程并使用简单的数学运算,我们结合T1w, T2w和PDw图像来估计R1和R2映射。我们发现,在测试的3个数据集中,其中两个量词(T1w/PDw和T1w/ln(T2w))可以近似R1,而(ln(T2w/PDw))可以近似R2。我们发现这种方法也可以应用于广泛可用的DTI(扩散张量成像)数据集的T2w扫描。我们在体外幻影和体内人类数据集上测试了这些量词。我们发现,量词准确地表示了跨数据集的定量参数。最后,我们在临床环境中测试了量词,发现它们在数据集上是健壮的。我们的工作提供了一个简单的流水线,以提高MRI加权图像的可用性和定量准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Approximating R1 and R2: A Quantitative Approach to Clinical Weighted MRI

Approximating R1 and R2: A Quantitative Approach to Clinical Weighted MRI

Weighted MRI images are widely used in clinical as well as open-source neuroimaging databases. Weighted images such as T1-weighted, T2-weighted, and proton density-weighted (T1w, T2w, and PDw, respectively) are used for evaluating the brain's macrostructure; however, their values cannot be used for microstructural analysis, as they lack physical meaning. Quantitative MRI (qMRI) relaxation rate parameters (e.g., R1 and R2) do contain microstructural physical meaning. Nevertheless, qMRI is rarely done in large-scale clinical databases. Currently, the weighted images ratio T1w/T2w is used as a quantifier to approximate the brain's microstructure. In this paper, we test three additional quantifiers that approximate quantitative maps, which can help bring quantitative MRI to the clinic for easy use. Following the signal equations and using simple mathematical operations, we combine the T1w, T2w, and PDw images to estimate the R1 and R2 maps. We find that two of these quantifiers (T1w/PDw and T1w/ln(T2w)) can approximate R1, and that (ln(T2w/PDw)) can approximate R2, in 3 datasets that were tested. We find that this approach also can be applied to T2w scans taken from widely available DTI (Diffusion Tensor Imaging) datasets. We tested these quantifiers on both in vitro phantom and in vivo human datasets. We found that the quantifiers accurately represent the quantitative parameters across datasets. Finally, we tested the quantifiers within a clinical context, and found that they are robust across datasets. Our work provides a simple pipeline to enhance the usability and quantitative accuracy of MRI weighted images.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Brain Mapping
Human Brain Mapping 医学-核医学
CiteScore
8.30
自引率
6.20%
发文量
401
审稿时长
3-6 weeks
期刊介绍: Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged. Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信