衰老对人类大脑皮层灰质血流动力学反应功能的整体影响。

IF 3.5 2区 医学 Q1 NEUROIMAGING
Nooshin J. Fesharaki, Amanda Taylor, Keisjon Mosby, Ruosha Li, Jung Hwan Kim, David Ress
{"title":"衰老对人类大脑皮层灰质血流动力学反应功能的整体影响。","authors":"Nooshin J. Fesharaki,&nbsp;Amanda Taylor,&nbsp;Keisjon Mosby,&nbsp;Ruosha Li,&nbsp;Jung Hwan Kim,&nbsp;David Ress","doi":"10.1002/hbm.70100","DOIUrl":null,"url":null,"abstract":"<p>In functional magnetic resonance imaging, the hemodynamic response function (HRF) is a stereotypical response to local changes in cerebral hemodynamics and oxygen metabolism due to briefly (&lt; 4 s) evoked neural activity. Accordingly, the HRF is often used as an impulse response with the assumption of linearity in data analysis. In cognitive aging studies, it has been very common to interpret differences in brain activation as age-related changes in neural activity. Contrary to this assumption, however, evidence has accrued that normal aging may also significantly affect the vasculature, thereby affecting cerebral hemodynamics and metabolism, confounding interpretation of fMRI cognitive aging studies. In this study, use was made of a multisensory task to evoke the HRF in ~87% of cerebral cortex in cognitively intact adults with ages ranging from 22 to 75 years. This widespread activation enabled us to investigate age trends in the spatial distributions of HRF characteristics within the majority of cortical gray matter, which we termed as global age trends. The task evoked both positive and negative HRFs, which were characterized using model-free parameters in native-space coordinates. We found significant global age trends in the distributions of HRF parameters in terms of both amplitudes (e.g., peak amplitude and contrast-to-noise ratio) and temporal dynamics (e.g., full-width-at-half-maximum). Our findings offer insight into how age-dependent changes affect neurovascular coupling and show promise for use of HRF parameters as non-invasive indicators for age-related pathology.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"45 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70100","citationCount":"0","resultStr":"{\"title\":\"Global Impact of Aging on the Hemodynamic Response Function in the Gray Matter of Human Cerebral Cortex\",\"authors\":\"Nooshin J. Fesharaki,&nbsp;Amanda Taylor,&nbsp;Keisjon Mosby,&nbsp;Ruosha Li,&nbsp;Jung Hwan Kim,&nbsp;David Ress\",\"doi\":\"10.1002/hbm.70100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In functional magnetic resonance imaging, the hemodynamic response function (HRF) is a stereotypical response to local changes in cerebral hemodynamics and oxygen metabolism due to briefly (&lt; 4 s) evoked neural activity. Accordingly, the HRF is often used as an impulse response with the assumption of linearity in data analysis. In cognitive aging studies, it has been very common to interpret differences in brain activation as age-related changes in neural activity. Contrary to this assumption, however, evidence has accrued that normal aging may also significantly affect the vasculature, thereby affecting cerebral hemodynamics and metabolism, confounding interpretation of fMRI cognitive aging studies. In this study, use was made of a multisensory task to evoke the HRF in ~87% of cerebral cortex in cognitively intact adults with ages ranging from 22 to 75 years. This widespread activation enabled us to investigate age trends in the spatial distributions of HRF characteristics within the majority of cortical gray matter, which we termed as global age trends. The task evoked both positive and negative HRFs, which were characterized using model-free parameters in native-space coordinates. We found significant global age trends in the distributions of HRF parameters in terms of both amplitudes (e.g., peak amplitude and contrast-to-noise ratio) and temporal dynamics (e.g., full-width-at-half-maximum). Our findings offer insight into how age-dependent changes affect neurovascular coupling and show promise for use of HRF parameters as non-invasive indicators for age-related pathology.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"45 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70100\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70100\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70100","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

在功能磁共振成像中,血流动力学响应函数(HRF)是对大脑血流动力学和氧代谢的局部变化的一种刻板响应,这种局部变化是由短暂的 (
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Global Impact of Aging on the Hemodynamic Response Function in the Gray Matter of Human Cerebral Cortex

Global Impact of Aging on the Hemodynamic Response Function in the Gray Matter of Human Cerebral Cortex

In functional magnetic resonance imaging, the hemodynamic response function (HRF) is a stereotypical response to local changes in cerebral hemodynamics and oxygen metabolism due to briefly (< 4 s) evoked neural activity. Accordingly, the HRF is often used as an impulse response with the assumption of linearity in data analysis. In cognitive aging studies, it has been very common to interpret differences in brain activation as age-related changes in neural activity. Contrary to this assumption, however, evidence has accrued that normal aging may also significantly affect the vasculature, thereby affecting cerebral hemodynamics and metabolism, confounding interpretation of fMRI cognitive aging studies. In this study, use was made of a multisensory task to evoke the HRF in ~87% of cerebral cortex in cognitively intact adults with ages ranging from 22 to 75 years. This widespread activation enabled us to investigate age trends in the spatial distributions of HRF characteristics within the majority of cortical gray matter, which we termed as global age trends. The task evoked both positive and negative HRFs, which were characterized using model-free parameters in native-space coordinates. We found significant global age trends in the distributions of HRF parameters in terms of both amplitudes (e.g., peak amplitude and contrast-to-noise ratio) and temporal dynamics (e.g., full-width-at-half-maximum). Our findings offer insight into how age-dependent changes affect neurovascular coupling and show promise for use of HRF parameters as non-invasive indicators for age-related pathology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Brain Mapping
Human Brain Mapping 医学-核医学
CiteScore
8.30
自引率
6.20%
发文量
401
审稿时长
3-6 weeks
期刊介绍: Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged. Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信