{"title":"蓝鲸的全海域保护基因组学揭示了新的北半球亚种。","authors":"Magnus Wolf, Menno J de Jong, Axel Janke","doi":"10.1111/mec.17619","DOIUrl":null,"url":null,"abstract":"<p><p>The blue whale is an endangered and globally distributed species of baleen whale with multiple described subspecies, including the morphologically and genetically distinct pygmy blue whale. North Atlantic and North Pacific populations, however, are currently regarded as a single subspecies despite being separated by continental land masses and acoustic call differences. To determine the degree of isolation among the Northern Hemisphere populations, 14 North Pacific and 6 Western Australian blue whale nuclear and mitochondrial genomes were sequenced and analysed together with 11 publicly available North Atlantic blue whale genomes. Population genomic analyses revealed distinctly differentiated clusters and limited genetic exchange among all three populations, indicating a high degree of isolation between the Northern Hemisphere populations. Nevertheless, the genomic and mitogenomic distances between all blue whale populations, including the Western Australian pygmy blue whale, are low when compared to other inter-subspecies distances in cetaceans. Given that the Western Australian pygmy blue whale is an already recognised subspecies and further supported by previously reported acoustic differences, a proposal is made to treat the two Northern Hemisphere populations as separate subspecies, namely Balaenoptera musculus musculus (North Atlantic blue whale) and Balaenoptera musculus sulfureus (North Pacific blue whale). Furthermore, a first molecular viability assessment of all three populations not only found a generally high genomic diversity among blue whales but also a lack of alleles at low frequency, non-neutral evolution and increased effects of inbreeding. This suggests a substantial anthropogenic impact on the genotypes of blue whales and calls for careful monitoring in future conservation plans.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17619"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ocean-Wide Conservation Genomics of Blue Whales Suggest New Northern Hemisphere Subspecies.\",\"authors\":\"Magnus Wolf, Menno J de Jong, Axel Janke\",\"doi\":\"10.1111/mec.17619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The blue whale is an endangered and globally distributed species of baleen whale with multiple described subspecies, including the morphologically and genetically distinct pygmy blue whale. North Atlantic and North Pacific populations, however, are currently regarded as a single subspecies despite being separated by continental land masses and acoustic call differences. To determine the degree of isolation among the Northern Hemisphere populations, 14 North Pacific and 6 Western Australian blue whale nuclear and mitochondrial genomes were sequenced and analysed together with 11 publicly available North Atlantic blue whale genomes. Population genomic analyses revealed distinctly differentiated clusters and limited genetic exchange among all three populations, indicating a high degree of isolation between the Northern Hemisphere populations. Nevertheless, the genomic and mitogenomic distances between all blue whale populations, including the Western Australian pygmy blue whale, are low when compared to other inter-subspecies distances in cetaceans. Given that the Western Australian pygmy blue whale is an already recognised subspecies and further supported by previously reported acoustic differences, a proposal is made to treat the two Northern Hemisphere populations as separate subspecies, namely Balaenoptera musculus musculus (North Atlantic blue whale) and Balaenoptera musculus sulfureus (North Pacific blue whale). Furthermore, a first molecular viability assessment of all three populations not only found a generally high genomic diversity among blue whales but also a lack of alleles at low frequency, non-neutral evolution and increased effects of inbreeding. This suggests a substantial anthropogenic impact on the genotypes of blue whales and calls for careful monitoring in future conservation plans.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\" \",\"pages\":\"e17619\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mec.17619\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17619","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ocean-Wide Conservation Genomics of Blue Whales Suggest New Northern Hemisphere Subspecies.
The blue whale is an endangered and globally distributed species of baleen whale with multiple described subspecies, including the morphologically and genetically distinct pygmy blue whale. North Atlantic and North Pacific populations, however, are currently regarded as a single subspecies despite being separated by continental land masses and acoustic call differences. To determine the degree of isolation among the Northern Hemisphere populations, 14 North Pacific and 6 Western Australian blue whale nuclear and mitochondrial genomes were sequenced and analysed together with 11 publicly available North Atlantic blue whale genomes. Population genomic analyses revealed distinctly differentiated clusters and limited genetic exchange among all three populations, indicating a high degree of isolation between the Northern Hemisphere populations. Nevertheless, the genomic and mitogenomic distances between all blue whale populations, including the Western Australian pygmy blue whale, are low when compared to other inter-subspecies distances in cetaceans. Given that the Western Australian pygmy blue whale is an already recognised subspecies and further supported by previously reported acoustic differences, a proposal is made to treat the two Northern Hemisphere populations as separate subspecies, namely Balaenoptera musculus musculus (North Atlantic blue whale) and Balaenoptera musculus sulfureus (North Pacific blue whale). Furthermore, a first molecular viability assessment of all three populations not only found a generally high genomic diversity among blue whales but also a lack of alleles at low frequency, non-neutral evolution and increased effects of inbreeding. This suggests a substantial anthropogenic impact on the genotypes of blue whales and calls for careful monitoring in future conservation plans.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms