迟缓反应扩散方程解的全局[公式省略]-估计和耗散[公式省略]-估计

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Ruijing Wang , Chunqiu Li
{"title":"迟缓反应扩散方程解的全局[公式省略]-估计和耗散[公式省略]-估计","authors":"Ruijing Wang ,&nbsp;Chunqiu Li","doi":"10.1016/j.aml.2024.109423","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with the retarded reaction–diffusion equation <span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><mi>G</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow><mo>+</mo><mi>h</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> in a bounded domain. We allow both the nonlinear terms <span><math><mi>f</mi></math></span> and <span><math><mi>G</mi></math></span> to be supercritical, in which case the solutions may blow up in finite time, making it difficult to obtain global estimates. Here we employ some appropriate structure conditions to deal with this problem. In particular, we establish detailed global <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span>-estimates and dissipative <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-estimates for the solutions and further enhance the regularity results.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109423"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global L∞-estimates and dissipative H2-estimates of solutions for retarded reaction–diffusion equations\",\"authors\":\"Ruijing Wang ,&nbsp;Chunqiu Li\",\"doi\":\"10.1016/j.aml.2024.109423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is concerned with the retarded reaction–diffusion equation <span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><mi>G</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow><mo>+</mo><mi>h</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> in a bounded domain. We allow both the nonlinear terms <span><math><mi>f</mi></math></span> and <span><math><mi>G</mi></math></span> to be supercritical, in which case the solutions may blow up in finite time, making it difficult to obtain global estimates. Here we employ some appropriate structure conditions to deal with this problem. In particular, we establish detailed global <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span>-estimates and dissipative <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-estimates for the solutions and further enhance the regularity results.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"163 \",\"pages\":\"Article 109423\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924004439\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924004439","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了有界域上的延迟反应扩散方程∂tu−Δu=f(u)+G(t,ut)+h(x)。我们允许非线性项f和G都是超临界的,在这种情况下,解可能在有限时间内爆炸,使其难以获得全局估计。这里我们采用一些适当的结构条件来处理这个问题。特别地,我们建立了详细的解的全局L∞估计和耗散h2估计,并进一步增强了正则性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global L∞-estimates and dissipative H2-estimates of solutions for retarded reaction–diffusion equations
This paper is concerned with the retarded reaction–diffusion equation tuΔu=f(u)+G(t,ut)+h(x) in a bounded domain. We allow both the nonlinear terms f and G to be supercritical, in which case the solutions may blow up in finite time, making it difficult to obtain global estimates. Here we employ some appropriate structure conditions to deal with this problem. In particular, we establish detailed global L-estimates and dissipative H2-estimates for the solutions and further enhance the regularity results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信