Lara A. Turello, Amber Consul, Christopher Yip, Shirley Shen, Cale Seymour, Corey Geurink, Israel Alvarado, Ernesto Abel-Santos
{"title":"差异基因表达分析表明,艰难梭菌菌株630对头孢菌素具有内在抗性。","authors":"Lara A. Turello, Amber Consul, Christopher Yip, Shirley Shen, Cale Seymour, Corey Geurink, Israel Alvarado, Ernesto Abel-Santos","doi":"10.1038/s41429-024-00795-3","DOIUrl":null,"url":null,"abstract":"Clostridioides difficile infection (CDI) is the most common nosocomial infection in the US. CDI has become a growing concern due to C. difficile’s resistance to several antibiotics, including cephalosporins. Furthermore, patients administered cephalosporins are at higher risk of contracting CDI. Cephalosporins are β-lactam antibiotics, which prevent bacterial cell wall synthesis by inhibiting penicillin-binding proteins (PBPs). β-lactam-resistant bacteria evade these antibiotics by producing β-lactamases or by harboring low-affinity PBPs. A genomic analysis of C. difficile strain 630 identified 31 putative β-lactam resistance genes. Upon cefoxitin exposure, few C. difficile strain 630 putative antibiotic-resistant genes were overexpressed. Most notably, the β-lactamase blaCDD gene was upregulated approximately 600-fold, as previously reported. Deletion of the blaCDD locus did not change in cephalosporin susceptibility. Deletion of the second most upregulated gene, the PBP vanY, was also ineffective at decreasing cephalosporin resistance. Cefoxitin exposure of the C. difficile strain 630ΔblaCDD mutant did not increase upregulation of other putative antibiotic resistance genes compared to wildtype C. difficile strain 630. Transcriptomic analyses of wildtype C. difficile strain 630 exposed to cephradine, cefoxitin, ceftazidime, or cefepime revealed the shared upregulation of a putative heterodimeric ABC transporter encoded by loci CD630_04590 (ABC transporter ATP-binding protein) and CD630_04600 (ABC transporter permease). These genes are genomically located directly downstream of blaCDD (CD630_04580). The deletion mutant CD630_04600 remained resistant to a number of antibiotics. Thus, even though blaCDD, CD630_04590, and CD630_04600 are all upregulated when exposed to cephalosporins, they do not seem to be involved in antibiotic resistance in C. difficile strain 630.","PeriodicalId":54884,"journal":{"name":"Journal of Antibiotics","volume":"78 2","pages":"113-125"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential gene expression analysis shows that cephalosporin resistance is intrinsic to Clostridioides difficile strain 630\",\"authors\":\"Lara A. Turello, Amber Consul, Christopher Yip, Shirley Shen, Cale Seymour, Corey Geurink, Israel Alvarado, Ernesto Abel-Santos\",\"doi\":\"10.1038/s41429-024-00795-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clostridioides difficile infection (CDI) is the most common nosocomial infection in the US. CDI has become a growing concern due to C. difficile’s resistance to several antibiotics, including cephalosporins. Furthermore, patients administered cephalosporins are at higher risk of contracting CDI. Cephalosporins are β-lactam antibiotics, which prevent bacterial cell wall synthesis by inhibiting penicillin-binding proteins (PBPs). β-lactam-resistant bacteria evade these antibiotics by producing β-lactamases or by harboring low-affinity PBPs. A genomic analysis of C. difficile strain 630 identified 31 putative β-lactam resistance genes. Upon cefoxitin exposure, few C. difficile strain 630 putative antibiotic-resistant genes were overexpressed. Most notably, the β-lactamase blaCDD gene was upregulated approximately 600-fold, as previously reported. Deletion of the blaCDD locus did not change in cephalosporin susceptibility. Deletion of the second most upregulated gene, the PBP vanY, was also ineffective at decreasing cephalosporin resistance. Cefoxitin exposure of the C. difficile strain 630ΔblaCDD mutant did not increase upregulation of other putative antibiotic resistance genes compared to wildtype C. difficile strain 630. Transcriptomic analyses of wildtype C. difficile strain 630 exposed to cephradine, cefoxitin, ceftazidime, or cefepime revealed the shared upregulation of a putative heterodimeric ABC transporter encoded by loci CD630_04590 (ABC transporter ATP-binding protein) and CD630_04600 (ABC transporter permease). These genes are genomically located directly downstream of blaCDD (CD630_04580). The deletion mutant CD630_04600 remained resistant to a number of antibiotics. Thus, even though blaCDD, CD630_04590, and CD630_04600 are all upregulated when exposed to cephalosporins, they do not seem to be involved in antibiotic resistance in C. difficile strain 630.\",\"PeriodicalId\":54884,\"journal\":{\"name\":\"Journal of Antibiotics\",\"volume\":\"78 2\",\"pages\":\"113-125\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Antibiotics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41429-024-00795-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antibiotics","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41429-024-00795-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Differential gene expression analysis shows that cephalosporin resistance is intrinsic to Clostridioides difficile strain 630
Clostridioides difficile infection (CDI) is the most common nosocomial infection in the US. CDI has become a growing concern due to C. difficile’s resistance to several antibiotics, including cephalosporins. Furthermore, patients administered cephalosporins are at higher risk of contracting CDI. Cephalosporins are β-lactam antibiotics, which prevent bacterial cell wall synthesis by inhibiting penicillin-binding proteins (PBPs). β-lactam-resistant bacteria evade these antibiotics by producing β-lactamases or by harboring low-affinity PBPs. A genomic analysis of C. difficile strain 630 identified 31 putative β-lactam resistance genes. Upon cefoxitin exposure, few C. difficile strain 630 putative antibiotic-resistant genes were overexpressed. Most notably, the β-lactamase blaCDD gene was upregulated approximately 600-fold, as previously reported. Deletion of the blaCDD locus did not change in cephalosporin susceptibility. Deletion of the second most upregulated gene, the PBP vanY, was also ineffective at decreasing cephalosporin resistance. Cefoxitin exposure of the C. difficile strain 630ΔblaCDD mutant did not increase upregulation of other putative antibiotic resistance genes compared to wildtype C. difficile strain 630. Transcriptomic analyses of wildtype C. difficile strain 630 exposed to cephradine, cefoxitin, ceftazidime, or cefepime revealed the shared upregulation of a putative heterodimeric ABC transporter encoded by loci CD630_04590 (ABC transporter ATP-binding protein) and CD630_04600 (ABC transporter permease). These genes are genomically located directly downstream of blaCDD (CD630_04580). The deletion mutant CD630_04600 remained resistant to a number of antibiotics. Thus, even though blaCDD, CD630_04590, and CD630_04600 are all upregulated when exposed to cephalosporins, they do not seem to be involved in antibiotic resistance in C. difficile strain 630.
期刊介绍:
The Journal of Antibiotics seeks to promote research on antibiotics and related types of biologically active substances and publishes Articles, Review Articles, Brief Communication, Correspondence and other specially commissioned reports. The Journal of Antibiotics accepts papers on biochemical, chemical, microbiological and pharmacological studies. However, studies regarding human therapy do not fall under the journal’s scope. Contributions regarding recently discovered antibiotics and biologically active microbial products are particularly encouraged. Topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Discovery of new antibiotics and related types of biologically active substances
Production, isolation, characterization, structural elucidation, chemical synthesis and derivatization, biological activities, mechanisms of action, and structure-activity relationships of antibiotics and related types of biologically active substances
Biosynthesis, bioconversion, taxonomy and genetic studies on producing microorganisms, as well as improvement of production of antibiotics and related types of biologically active substances
Novel physical, chemical, biochemical, microbiological or pharmacological methods for detection, assay, determination, structural elucidation and evaluation of antibiotics and related types of biologically active substances
Newly found properties, mechanisms of action and resistance-development of antibiotics and related types of biologically active substances.