Jordan T. Froese, Joseph A. Balsamo, Benjamin J. Reisman, Sierra M. Barone, Jonathan M. Irish, Brian O. Bachmann
{"title":"多重活性代谢组学从一种次源放线菌中分离大环内酯类。","authors":"Jordan T. Froese, Joseph A. Balsamo, Benjamin J. Reisman, Sierra M. Barone, Jonathan M. Irish, Brian O. Bachmann","doi":"10.1038/s41429-024-00792-6","DOIUrl":null,"url":null,"abstract":"Chemical and biological stimulus screening in a hypogean actinomycete was used to elicit secondary metabolism. Optimal biosynthesis of bioactive natural products was identified using Multiplexed Activity Profiling for determining dose-dependent activity via six single-cell biological readouts. Bioactive extracts were fractioned to establish candidate compounds for isolation using Multiplexed Activity Metabolomics by correlating microtiter well-isolated phenotypes and extracted ion current peaks. This guided the isolation of four filipin polyene macrolides including a new metabolite filipin XV, an alkyl side-chain hydroxylated congener of the filipin chainin, with substantially attenuated cytotoxicity. Filipin-specific cytotoxicity was confirmed using flow cytometry and fluorescence microscopy.","PeriodicalId":54884,"journal":{"name":"Journal of Antibiotics","volume":"78 2","pages":"78-89"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769839/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multiplexed activity metabolomics for isolation of filipin macrolides from a hypogean actinomycete\",\"authors\":\"Jordan T. Froese, Joseph A. Balsamo, Benjamin J. Reisman, Sierra M. Barone, Jonathan M. Irish, Brian O. Bachmann\",\"doi\":\"10.1038/s41429-024-00792-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemical and biological stimulus screening in a hypogean actinomycete was used to elicit secondary metabolism. Optimal biosynthesis of bioactive natural products was identified using Multiplexed Activity Profiling for determining dose-dependent activity via six single-cell biological readouts. Bioactive extracts were fractioned to establish candidate compounds for isolation using Multiplexed Activity Metabolomics by correlating microtiter well-isolated phenotypes and extracted ion current peaks. This guided the isolation of four filipin polyene macrolides including a new metabolite filipin XV, an alkyl side-chain hydroxylated congener of the filipin chainin, with substantially attenuated cytotoxicity. Filipin-specific cytotoxicity was confirmed using flow cytometry and fluorescence microscopy.\",\"PeriodicalId\":54884,\"journal\":{\"name\":\"Journal of Antibiotics\",\"volume\":\"78 2\",\"pages\":\"78-89\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769839/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Antibiotics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41429-024-00792-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antibiotics","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41429-024-00792-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Multiplexed activity metabolomics for isolation of filipin macrolides from a hypogean actinomycete
Chemical and biological stimulus screening in a hypogean actinomycete was used to elicit secondary metabolism. Optimal biosynthesis of bioactive natural products was identified using Multiplexed Activity Profiling for determining dose-dependent activity via six single-cell biological readouts. Bioactive extracts were fractioned to establish candidate compounds for isolation using Multiplexed Activity Metabolomics by correlating microtiter well-isolated phenotypes and extracted ion current peaks. This guided the isolation of four filipin polyene macrolides including a new metabolite filipin XV, an alkyl side-chain hydroxylated congener of the filipin chainin, with substantially attenuated cytotoxicity. Filipin-specific cytotoxicity was confirmed using flow cytometry and fluorescence microscopy.
期刊介绍:
The Journal of Antibiotics seeks to promote research on antibiotics and related types of biologically active substances and publishes Articles, Review Articles, Brief Communication, Correspondence and other specially commissioned reports. The Journal of Antibiotics accepts papers on biochemical, chemical, microbiological and pharmacological studies. However, studies regarding human therapy do not fall under the journal’s scope. Contributions regarding recently discovered antibiotics and biologically active microbial products are particularly encouraged. Topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Discovery of new antibiotics and related types of biologically active substances
Production, isolation, characterization, structural elucidation, chemical synthesis and derivatization, biological activities, mechanisms of action, and structure-activity relationships of antibiotics and related types of biologically active substances
Biosynthesis, bioconversion, taxonomy and genetic studies on producing microorganisms, as well as improvement of production of antibiotics and related types of biologically active substances
Novel physical, chemical, biochemical, microbiological or pharmacological methods for detection, assay, determination, structural elucidation and evaluation of antibiotics and related types of biologically active substances
Newly found properties, mechanisms of action and resistance-development of antibiotics and related types of biologically active substances.