Zhihui Xin, Lu Zhao, Zhiqiang Bai, Chaoyu Wang, Zhixiong Liu, Jun Qin, Lizhen Liu, Haifei Zhang, Yunfeng Bai and Feng Feng
{"title":"适配体功能化中空碳纳米球用于靶向化疗光热治疗乳腺肿瘤†","authors":"Zhihui Xin, Lu Zhao, Zhiqiang Bai, Chaoyu Wang, Zhixiong Liu, Jun Qin, Lizhen Liu, Haifei Zhang, Yunfeng Bai and Feng Feng","doi":"10.1039/D4QM00592A","DOIUrl":null,"url":null,"abstract":"<p >Hollow carbon nanospheres (HCNs) are an ideal nanomaterial for photothermal therapy (PTT) owing to their low cytotoxicity, excellent photothermal conversion performance, unique cavities and porous shells. However, poor targeting and inadequate efficiency hugely impede their clinical application. Herein, a novel targeted therapeutic system HCNs/DOX/PEG/Apt-M was successfully constructed, which exhibited specific recognition and binding capabilities towards MCF-7 cells. As expected, the therapeutic system could rapidly accumulate in the MCF-7 cells with the aid of the MUCI aptamer (Apt-M). Furthermore, the therapeutic system exhibited excellent DOX controlled release ability during treatments to facilitate chemotherapy (CHT). Under laser irradiation, the therapeutic system could effectively absorb the near-infrared light and generate a large amount of heat to achieve PTT. Moreover, the temperature elevation of the therapeutic system promoted DOX release and enhanced the potency of CHT. Excitingly, experimental results confirmed that HCNs/DOX/PEG/Apt-M exhibited excellent CHT–PTT combination therapeutic effect and the active targeting efficiency for the MCF-7 tumor. This study opened a new avenue to breast tumor-targeted therapy based on novel nanomaterials.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 24","pages":" 4049-4058"},"PeriodicalIF":6.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aptamer-functionalized hollow carbon nanospheres for the targeted chemo-photothermal therapy of breast tumor†\",\"authors\":\"Zhihui Xin, Lu Zhao, Zhiqiang Bai, Chaoyu Wang, Zhixiong Liu, Jun Qin, Lizhen Liu, Haifei Zhang, Yunfeng Bai and Feng Feng\",\"doi\":\"10.1039/D4QM00592A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hollow carbon nanospheres (HCNs) are an ideal nanomaterial for photothermal therapy (PTT) owing to their low cytotoxicity, excellent photothermal conversion performance, unique cavities and porous shells. However, poor targeting and inadequate efficiency hugely impede their clinical application. Herein, a novel targeted therapeutic system HCNs/DOX/PEG/Apt-M was successfully constructed, which exhibited specific recognition and binding capabilities towards MCF-7 cells. As expected, the therapeutic system could rapidly accumulate in the MCF-7 cells with the aid of the MUCI aptamer (Apt-M). Furthermore, the therapeutic system exhibited excellent DOX controlled release ability during treatments to facilitate chemotherapy (CHT). Under laser irradiation, the therapeutic system could effectively absorb the near-infrared light and generate a large amount of heat to achieve PTT. Moreover, the temperature elevation of the therapeutic system promoted DOX release and enhanced the potency of CHT. Excitingly, experimental results confirmed that HCNs/DOX/PEG/Apt-M exhibited excellent CHT–PTT combination therapeutic effect and the active targeting efficiency for the MCF-7 tumor. This study opened a new avenue to breast tumor-targeted therapy based on novel nanomaterials.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 24\",\"pages\":\" 4049-4058\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00592a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00592a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Aptamer-functionalized hollow carbon nanospheres for the targeted chemo-photothermal therapy of breast tumor†
Hollow carbon nanospheres (HCNs) are an ideal nanomaterial for photothermal therapy (PTT) owing to their low cytotoxicity, excellent photothermal conversion performance, unique cavities and porous shells. However, poor targeting and inadequate efficiency hugely impede their clinical application. Herein, a novel targeted therapeutic system HCNs/DOX/PEG/Apt-M was successfully constructed, which exhibited specific recognition and binding capabilities towards MCF-7 cells. As expected, the therapeutic system could rapidly accumulate in the MCF-7 cells with the aid of the MUCI aptamer (Apt-M). Furthermore, the therapeutic system exhibited excellent DOX controlled release ability during treatments to facilitate chemotherapy (CHT). Under laser irradiation, the therapeutic system could effectively absorb the near-infrared light and generate a large amount of heat to achieve PTT. Moreover, the temperature elevation of the therapeutic system promoted DOX release and enhanced the potency of CHT. Excitingly, experimental results confirmed that HCNs/DOX/PEG/Apt-M exhibited excellent CHT–PTT combination therapeutic effect and the active targeting efficiency for the MCF-7 tumor. This study opened a new avenue to breast tumor-targeted therapy based on novel nanomaterials.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.