局部化学秩序使低温环境下的超强和延展性高熵合金成为可能。

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Lifang Sun, Zhufeng He, Nan Jia, Yanxin Guo, Shuang Jiang, Yuliang Yang, Yuxin Liu, Xianjun Guan, Yongfeng Shen, Hai-Le Yan, Peter K. Liaw
{"title":"局部化学秩序使低温环境下的超强和延展性高熵合金成为可能。","authors":"Lifang Sun,&nbsp;Zhufeng He,&nbsp;Nan Jia,&nbsp;Yanxin Guo,&nbsp;Shuang Jiang,&nbsp;Yuliang Yang,&nbsp;Yuxin Liu,&nbsp;Xianjun Guan,&nbsp;Yongfeng Shen,&nbsp;Hai-Le Yan,&nbsp;Peter K. Liaw","doi":"10.1126/sciadv.adq6398","DOIUrl":null,"url":null,"abstract":"<div >Owing to superior strength-ductility combination and great potential for applications in extreme conditions, high-entropy alloys (HEAs) with the face-centered cubic (FCC) structure have drawn enormous attention. However, the FCC structure limits yield strength and makes the alloys unable to meet ever-increasing demands for exploring the universe. Here, we report a strategy to obtain FCC materials with outstanding mechanical properties in both ambient and cryogenic environments, via exploiting dynamic development of the interstitial-driven local chemical order (LCO). Dense laths composed of the multiscaled LCO domains evolve from planar-slip bands that form in the prior thermomechanical processing, contributing to ultrahigh yield strengths over a wide temperature range. During cryogenic tensile deformation, LCO further develops and promotes remarkable dislocation cross-slip. Together with the deformation-driven transformation and twinning, these factors lead to satisfactory work hardening. The cryogenic loading–promoted LCO, also revealed by ab initio calculations, opens an avenue for designing advanced cryogenic materials.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"10 48","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adq6398","citationCount":"0","resultStr":"{\"title\":\"Local chemical order enables an ultrastrong and ductile high-entropy alloy in a cryogenic environment\",\"authors\":\"Lifang Sun,&nbsp;Zhufeng He,&nbsp;Nan Jia,&nbsp;Yanxin Guo,&nbsp;Shuang Jiang,&nbsp;Yuliang Yang,&nbsp;Yuxin Liu,&nbsp;Xianjun Guan,&nbsp;Yongfeng Shen,&nbsp;Hai-Le Yan,&nbsp;Peter K. Liaw\",\"doi\":\"10.1126/sciadv.adq6398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Owing to superior strength-ductility combination and great potential for applications in extreme conditions, high-entropy alloys (HEAs) with the face-centered cubic (FCC) structure have drawn enormous attention. However, the FCC structure limits yield strength and makes the alloys unable to meet ever-increasing demands for exploring the universe. Here, we report a strategy to obtain FCC materials with outstanding mechanical properties in both ambient and cryogenic environments, via exploiting dynamic development of the interstitial-driven local chemical order (LCO). Dense laths composed of the multiscaled LCO domains evolve from planar-slip bands that form in the prior thermomechanical processing, contributing to ultrahigh yield strengths over a wide temperature range. During cryogenic tensile deformation, LCO further develops and promotes remarkable dislocation cross-slip. Together with the deformation-driven transformation and twinning, these factors lead to satisfactory work hardening. The cryogenic loading–promoted LCO, also revealed by ab initio calculations, opens an avenue for designing advanced cryogenic materials.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"10 48\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adq6398\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adq6398\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adq6398","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

具有面心立方结构的高熵合金(HEAs)由于其优异的强度-塑性组合性能和在极端条件下的巨大应用潜力而备受关注。然而,FCC结构限制了合金的屈服强度,使其无法满足日益增长的宇宙探索需求。在这里,我们报告了一种策略,通过利用间隙驱动的局部化学顺序(LCO)的动态发展,获得在常温和低温环境下具有出色机械性能的FCC材料。由多尺度LCO畴组成的致密板条由先前的热机械加工中形成的平面滑移带演变而来,有助于在宽温度范围内获得超高的屈服强度。在低温拉伸变形过程中,LCO进一步发展并促进了显著的位错交叉滑移。这些因素与变形驱动相变和孪晶共同作用,形成了满意的加工硬化效果。通过从头计算揭示了低温加载促进的LCO,为设计先进的低温材料开辟了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Local chemical order enables an ultrastrong and ductile high-entropy alloy in a cryogenic environment

Local chemical order enables an ultrastrong and ductile high-entropy alloy in a cryogenic environment
Owing to superior strength-ductility combination and great potential for applications in extreme conditions, high-entropy alloys (HEAs) with the face-centered cubic (FCC) structure have drawn enormous attention. However, the FCC structure limits yield strength and makes the alloys unable to meet ever-increasing demands for exploring the universe. Here, we report a strategy to obtain FCC materials with outstanding mechanical properties in both ambient and cryogenic environments, via exploiting dynamic development of the interstitial-driven local chemical order (LCO). Dense laths composed of the multiscaled LCO domains evolve from planar-slip bands that form in the prior thermomechanical processing, contributing to ultrahigh yield strengths over a wide temperature range. During cryogenic tensile deformation, LCO further develops and promotes remarkable dislocation cross-slip. Together with the deformation-driven transformation and twinning, these factors lead to satisfactory work hardening. The cryogenic loading–promoted LCO, also revealed by ab initio calculations, opens an avenue for designing advanced cryogenic materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信