Anna Fiesinger, Carol Buitrago-López, Abdoallah Sharaf, Anny Cárdenas, Christian R Voolstra
{"title":"红海中部造礁珊瑚 Acropora hemprichii 的基因组组装草案。","authors":"Anna Fiesinger, Carol Buitrago-López, Abdoallah Sharaf, Anny Cárdenas, Christian R Voolstra","doi":"10.1038/s41597-024-04080-8","DOIUrl":null,"url":null,"abstract":"<p><p>Coral reef ecosystems are under threat from climate change. Thus, active interventions to spur coral conservation/restoration are critical to support reef survival, greatly informed by a molecular understanding of resilience. The genus Acropora is a species-rich and globally prevalent reef builder that has experienced dramatic declines in the Caribbean. Here we generated a draft genome of the common coral Acropora hemprichii from the central Red Sea, one of the warmest water bodies in the world. We assembled the genome using 10x Chromium sequencing with subsequent scaffolding using a reference genome and Illumina short-read sequencing contigs. The A. hemprichii genome has an assembly size of 495.6 Mb confirmed using physical size estimation, of which 247.8 Mb (50%) are repeats. The scaffold N50 is 1.38 Mb with 99.6% of BUSCO genes identified (93.7% complete, 5.9% fragmented), providing a set of 26,865 protein-coding genes. The Red Sea A. hemprichii reference genome provides a valuable resource for studies aiming to decode the genomic architecture of resilience, e.g. through comparative analyses with other Acropora genomes.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1288"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599867/pdf/","citationCount":"0","resultStr":"{\"title\":\"A draft genome assembly of the reef-building coral Acropora hemprichii from the central Red Sea.\",\"authors\":\"Anna Fiesinger, Carol Buitrago-López, Abdoallah Sharaf, Anny Cárdenas, Christian R Voolstra\",\"doi\":\"10.1038/s41597-024-04080-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coral reef ecosystems are under threat from climate change. Thus, active interventions to spur coral conservation/restoration are critical to support reef survival, greatly informed by a molecular understanding of resilience. The genus Acropora is a species-rich and globally prevalent reef builder that has experienced dramatic declines in the Caribbean. Here we generated a draft genome of the common coral Acropora hemprichii from the central Red Sea, one of the warmest water bodies in the world. We assembled the genome using 10x Chromium sequencing with subsequent scaffolding using a reference genome and Illumina short-read sequencing contigs. The A. hemprichii genome has an assembly size of 495.6 Mb confirmed using physical size estimation, of which 247.8 Mb (50%) are repeats. The scaffold N50 is 1.38 Mb with 99.6% of BUSCO genes identified (93.7% complete, 5.9% fragmented), providing a set of 26,865 protein-coding genes. The Red Sea A. hemprichii reference genome provides a valuable resource for studies aiming to decode the genomic architecture of resilience, e.g. through comparative analyses with other Acropora genomes.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"11 1\",\"pages\":\"1288\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599867/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-024-04080-8\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04080-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A draft genome assembly of the reef-building coral Acropora hemprichii from the central Red Sea.
Coral reef ecosystems are under threat from climate change. Thus, active interventions to spur coral conservation/restoration are critical to support reef survival, greatly informed by a molecular understanding of resilience. The genus Acropora is a species-rich and globally prevalent reef builder that has experienced dramatic declines in the Caribbean. Here we generated a draft genome of the common coral Acropora hemprichii from the central Red Sea, one of the warmest water bodies in the world. We assembled the genome using 10x Chromium sequencing with subsequent scaffolding using a reference genome and Illumina short-read sequencing contigs. The A. hemprichii genome has an assembly size of 495.6 Mb confirmed using physical size estimation, of which 247.8 Mb (50%) are repeats. The scaffold N50 is 1.38 Mb with 99.6% of BUSCO genes identified (93.7% complete, 5.9% fragmented), providing a set of 26,865 protein-coding genes. The Red Sea A. hemprichii reference genome provides a valuable resource for studies aiming to decode the genomic architecture of resilience, e.g. through comparative analyses with other Acropora genomes.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.