Olga Mileti, Noemi Baldino, Vittoria Marchio, Francesca R Lupi, Domenico Gabriele
{"title":"利用马铃薯皮废料设计包装薄膜的流变学和纹理研究","authors":"Olga Mileti, Noemi Baldino, Vittoria Marchio, Francesca R Lupi, Domenico Gabriele","doi":"10.3390/gels10110681","DOIUrl":null,"url":null,"abstract":"<p><p>The recovery of potato waste for circular-economy purposes is a growing area of industrial research. This waste, rich in nutrients and potential for reuse, can be a valuable source of starch for packaging applications. Rheology plays a crucial role in characterizing film-forming solutions before casting. In this work, packaging film was prepared from potato waste using rheological information to formulate the film-forming solution. To this aim, rheological measurements were carried out on starch/glycerol-only samples, and the data obtained were used to optimize the formulation from the waste. The polyphenol content of the peels was analyzed, and the resulting films were comprehensively characterized. This included assessments of color, extensibility, Fourier-transform infrared (FT-IR) spectroscopy, surface microscopy, and contact angle. Polyphenol-loaded films, suitable for packaging applications, were developed from potato waste. These films exhibited distinct properties compared to those made with pure starch, including an improved wettability of about 75° for the best sample and a high elastic modulus of about 36 MPa, which reduces the deformability but enhances the resistance against the stress. Through rheological studies, we were able to design films from potato peel waste. These films demonstrated promising mechanical performance.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 11","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593490/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rheological and Textural Investigation to Design Film for Packaging from Potato Peel Waste.\",\"authors\":\"Olga Mileti, Noemi Baldino, Vittoria Marchio, Francesca R Lupi, Domenico Gabriele\",\"doi\":\"10.3390/gels10110681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The recovery of potato waste for circular-economy purposes is a growing area of industrial research. This waste, rich in nutrients and potential for reuse, can be a valuable source of starch for packaging applications. Rheology plays a crucial role in characterizing film-forming solutions before casting. In this work, packaging film was prepared from potato waste using rheological information to formulate the film-forming solution. To this aim, rheological measurements were carried out on starch/glycerol-only samples, and the data obtained were used to optimize the formulation from the waste. The polyphenol content of the peels was analyzed, and the resulting films were comprehensively characterized. This included assessments of color, extensibility, Fourier-transform infrared (FT-IR) spectroscopy, surface microscopy, and contact angle. Polyphenol-loaded films, suitable for packaging applications, were developed from potato waste. These films exhibited distinct properties compared to those made with pure starch, including an improved wettability of about 75° for the best sample and a high elastic modulus of about 36 MPa, which reduces the deformability but enhances the resistance against the stress. Through rheological studies, we were able to design films from potato peel waste. These films demonstrated promising mechanical performance.</p>\",\"PeriodicalId\":12506,\"journal\":{\"name\":\"Gels\",\"volume\":\"10 11\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593490/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gels\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/gels10110681\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10110681","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Rheological and Textural Investigation to Design Film for Packaging from Potato Peel Waste.
The recovery of potato waste for circular-economy purposes is a growing area of industrial research. This waste, rich in nutrients and potential for reuse, can be a valuable source of starch for packaging applications. Rheology plays a crucial role in characterizing film-forming solutions before casting. In this work, packaging film was prepared from potato waste using rheological information to formulate the film-forming solution. To this aim, rheological measurements were carried out on starch/glycerol-only samples, and the data obtained were used to optimize the formulation from the waste. The polyphenol content of the peels was analyzed, and the resulting films were comprehensively characterized. This included assessments of color, extensibility, Fourier-transform infrared (FT-IR) spectroscopy, surface microscopy, and contact angle. Polyphenol-loaded films, suitable for packaging applications, were developed from potato waste. These films exhibited distinct properties compared to those made with pure starch, including an improved wettability of about 75° for the best sample and a high elastic modulus of about 36 MPa, which reduces the deformability but enhances the resistance against the stress. Through rheological studies, we were able to design films from potato peel waste. These films demonstrated promising mechanical performance.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.