将实时手掌成像与 Nelder-Mead 粒子群优化/回归算法应用于非接触式血压检测。

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Te-Jen Su, Ya-Chung Hung, Wei-Hong Lin, Wen-Rong Yang, Qian-Yi Zhuang, Yan-Xiang Fei, Shih-Ming Wang
{"title":"将实时手掌成像与 Nelder-Mead 粒子群优化/回归算法应用于非接触式血压检测。","authors":"Te-Jen Su, Ya-Chung Hung, Wei-Hong Lin, Wen-Rong Yang, Qian-Yi Zhuang, Yan-Xiang Fei, Shih-Ming Wang","doi":"10.3390/biomimetics9110713","DOIUrl":null,"url":null,"abstract":"<p><p>In response to the rising prevalence of hypertension due to lifestyle changes, this study introduces a novel approach for non-contact blood pressure (BP) monitoring. Recognizing the \"silent killer\" nature of hypertension, this research focuses on developing accessible, non-invasive BP measurement methods. This study compares two distinct non-contact BP measurement approaches: one combining the Nelder-Mead simplex method with particle swarm optimization (NM-PSO) and the other using machine learning regression analysis. In the NM-PSO method, a standard webcam captures continuous images of the palm, extracting physiological data through light wave reflection and employing independent component analysis (ICA) to remove noise artifacts. The NM-PSO achieves a verified root mean square error (RMSE) of 2.71 mmHg for systolic blood pressure (SBP) and 3.42 mmHg for diastolic blood pressure (DBP). Alternatively, the regression method derives BP values through machine learning-based regression formulas, resulting in an RMSE of 2.88 mmHg for SBP and 2.60 mmHg for DBP. Both methods enable fast, accurate, and convenient BP measurement within 10 s, suitable for home use. This study demonstrates a cost-effective solution for non-contact BP monitoring and highlights each method's advantages. The NM-PSO approach emphasizes optimization in noise handling, while the regression method leverages formulaic efficiency in BP estimation. These results offer a biomimetic approach that could replace traditional contact-based BP measurement devices, contributing to enhanced accessibility in hypertension management.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"9 11","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Real-Time Palm Imaging with Nelder-Mead Particle Swarm Optimization/Regression Algorithms for Non-Contact Blood Pressure Detection.\",\"authors\":\"Te-Jen Su, Ya-Chung Hung, Wei-Hong Lin, Wen-Rong Yang, Qian-Yi Zhuang, Yan-Xiang Fei, Shih-Ming Wang\",\"doi\":\"10.3390/biomimetics9110713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In response to the rising prevalence of hypertension due to lifestyle changes, this study introduces a novel approach for non-contact blood pressure (BP) monitoring. Recognizing the \\\"silent killer\\\" nature of hypertension, this research focuses on developing accessible, non-invasive BP measurement methods. This study compares two distinct non-contact BP measurement approaches: one combining the Nelder-Mead simplex method with particle swarm optimization (NM-PSO) and the other using machine learning regression analysis. In the NM-PSO method, a standard webcam captures continuous images of the palm, extracting physiological data through light wave reflection and employing independent component analysis (ICA) to remove noise artifacts. The NM-PSO achieves a verified root mean square error (RMSE) of 2.71 mmHg for systolic blood pressure (SBP) and 3.42 mmHg for diastolic blood pressure (DBP). Alternatively, the regression method derives BP values through machine learning-based regression formulas, resulting in an RMSE of 2.88 mmHg for SBP and 2.60 mmHg for DBP. Both methods enable fast, accurate, and convenient BP measurement within 10 s, suitable for home use. This study demonstrates a cost-effective solution for non-contact BP monitoring and highlights each method's advantages. The NM-PSO approach emphasizes optimization in noise handling, while the regression method leverages formulaic efficiency in BP estimation. These results offer a biomimetic approach that could replace traditional contact-based BP measurement devices, contributing to enhanced accessibility in hypertension management.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"9 11\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics9110713\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9110713","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

生活方式的改变导致高血压发病率不断上升,为应对这一问题,本研究引入了一种非接触式血压(BP)监测的新方法。由于认识到高血压是 "无声杀手",这项研究的重点是开发方便、无创的血压测量方法。本研究对两种不同的非接触式血压测量方法进行了比较:一种是将内尔德-梅德单纯形法与粒子群优化(NM-PSO)相结合,另一种是使用机器学习回归分析。在 NM-PSO 方法中,标准网络摄像头捕捉手掌的连续图像,通过光波反射提取生理数据,并采用独立分量分析(ICA)去除噪声伪影。经核实,NM-PSO 的均方根误差(RMSE)为:收缩压(SBP)2.71 mmHg,舒张压(DBP)3.42 mmHg。另外,回归法通过基于机器学习的回归公式得出血压值,SBP 的 RMSE 为 2.88 mmHg,DBP 为 2.60 mmHg。这两种方法都能在 10 秒内快速、准确、方便地测量血压,适合家庭使用。这项研究展示了一种经济有效的非接触式血压监测解决方案,并突出了每种方法的优势。NM-PSO 方法强调噪声处理的优化,而回归方法则在血压估算中利用公式效率。这些结果提供了一种生物仿生方法,可以取代传统的接触式血压测量设备,有助于提高高血压管理的可及性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Real-Time Palm Imaging with Nelder-Mead Particle Swarm Optimization/Regression Algorithms for Non-Contact Blood Pressure Detection.

In response to the rising prevalence of hypertension due to lifestyle changes, this study introduces a novel approach for non-contact blood pressure (BP) monitoring. Recognizing the "silent killer" nature of hypertension, this research focuses on developing accessible, non-invasive BP measurement methods. This study compares two distinct non-contact BP measurement approaches: one combining the Nelder-Mead simplex method with particle swarm optimization (NM-PSO) and the other using machine learning regression analysis. In the NM-PSO method, a standard webcam captures continuous images of the palm, extracting physiological data through light wave reflection and employing independent component analysis (ICA) to remove noise artifacts. The NM-PSO achieves a verified root mean square error (RMSE) of 2.71 mmHg for systolic blood pressure (SBP) and 3.42 mmHg for diastolic blood pressure (DBP). Alternatively, the regression method derives BP values through machine learning-based regression formulas, resulting in an RMSE of 2.88 mmHg for SBP and 2.60 mmHg for DBP. Both methods enable fast, accurate, and convenient BP measurement within 10 s, suitable for home use. This study demonstrates a cost-effective solution for non-contact BP monitoring and highlights each method's advantages. The NM-PSO approach emphasizes optimization in noise handling, while the regression method leverages formulaic efficiency in BP estimation. These results offer a biomimetic approach that could replace traditional contact-based BP measurement devices, contributing to enhanced accessibility in hypertension management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信