小麦草(Triticum aestivum L.)的甲醇提取物可防止双酚 A 诱导的 Wistar 大鼠卵巢类固醇生成途径紊乱并缓解子宫炎症。

IF 2.6 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
3 Biotech Pub Date : 2024-12-01 Epub Date: 2024-11-24 DOI:10.1007/s13205-024-04117-0
Ananya Barman, Angshita Ghosh, Tarun Kumar Kar, Sandip Chattopdhyay
{"title":"小麦草(Triticum aestivum L.)的甲醇提取物可防止双酚 A 诱导的 Wistar 大鼠卵巢类固醇生成途径紊乱并缓解子宫炎症。","authors":"Ananya Barman, Angshita Ghosh, Tarun Kumar Kar, Sandip Chattopdhyay","doi":"10.1007/s13205-024-04117-0","DOIUrl":null,"url":null,"abstract":"<p><p>The present study examined the anti-inflammatory and functional improvement of the uterus and ovary, respectively, in bisphenol-A (BPA)-fed adult Wistar rats following the ingestion of methanolic extract of wheatgrass (WG-ME). Four groups of rats were conditioned as vehicle-treated control, BPA-treated (100 mg/kg b.w.), BPA + WG-ME (100 mg BPA/kg b.w. + 200 mg WG-ME/kg b.w.), and WG-ME (200 mg/kg b.w.) groups. The LC-MS study confirmed the presence of numerous bioactive components in WG-ME. ELISA, PAGE, real-time PCR, and immunohistostaining were executed to test the efficacy of WG-ME against BPA. WG-ME was shown to induce significant weight gain of the uterus and ovaries as well as improve the estrous cycle and antioxidant status. WG-ME effectively suppressed the mRNA expression of TNF-α (tumor necrosis factor-alpha) and NF-κB (nuclear factor kappa-B). This extract also increased the expression of the antiapoptotic factor BCL2 (B-cell lymphoma 2) in the uterine tissue of rats administered BPA while impeding the abnormal expression of the tumor proteins p53, cylcin-D1, and BAX (BCL2-associated protein X). An enhanced steroidogenic event was supported by improved gonadotropins and reproductive hormone levels, feeble signaling of androgen receptors, and improved ovarian follicular growth with a distinct appearance of granulosa layer as well as better uterine histomorphology. The abundance of apigenin and catechin compounds in WG-ME may potentiate the above effects. The molecular interaction study predicted that apigenin inhibits TNF-α by interacting with its major site. Hence, WG-ME may exert its preventive efficacy in managing the functional imbalance of reproductive organs caused by BPA.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04117-0.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"14 12","pages":"310"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586330/pdf/","citationCount":"0","resultStr":"{\"title\":\"Methanolic extract of wheatgrass (<i>Triticum aestivum</i> L.) prevents BPA-induced disruptions in the ovarian steroidogenic pathway and alleviates uterine inflammation in Wistar rats.\",\"authors\":\"Ananya Barman, Angshita Ghosh, Tarun Kumar Kar, Sandip Chattopdhyay\",\"doi\":\"10.1007/s13205-024-04117-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study examined the anti-inflammatory and functional improvement of the uterus and ovary, respectively, in bisphenol-A (BPA)-fed adult Wistar rats following the ingestion of methanolic extract of wheatgrass (WG-ME). Four groups of rats were conditioned as vehicle-treated control, BPA-treated (100 mg/kg b.w.), BPA + WG-ME (100 mg BPA/kg b.w. + 200 mg WG-ME/kg b.w.), and WG-ME (200 mg/kg b.w.) groups. The LC-MS study confirmed the presence of numerous bioactive components in WG-ME. ELISA, PAGE, real-time PCR, and immunohistostaining were executed to test the efficacy of WG-ME against BPA. WG-ME was shown to induce significant weight gain of the uterus and ovaries as well as improve the estrous cycle and antioxidant status. WG-ME effectively suppressed the mRNA expression of TNF-α (tumor necrosis factor-alpha) and NF-κB (nuclear factor kappa-B). This extract also increased the expression of the antiapoptotic factor BCL2 (B-cell lymphoma 2) in the uterine tissue of rats administered BPA while impeding the abnormal expression of the tumor proteins p53, cylcin-D1, and BAX (BCL2-associated protein X). An enhanced steroidogenic event was supported by improved gonadotropins and reproductive hormone levels, feeble signaling of androgen receptors, and improved ovarian follicular growth with a distinct appearance of granulosa layer as well as better uterine histomorphology. The abundance of apigenin and catechin compounds in WG-ME may potentiate the above effects. The molecular interaction study predicted that apigenin inhibits TNF-α by interacting with its major site. Hence, WG-ME may exert its preventive efficacy in managing the functional imbalance of reproductive organs caused by BPA.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04117-0.</p>\",\"PeriodicalId\":7067,\"journal\":{\"name\":\"3 Biotech\",\"volume\":\"14 12\",\"pages\":\"310\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586330/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3 Biotech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13205-024-04117-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04117-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了双酚 A(BPA)喂养的成年 Wistar 大鼠在摄入小麦草甲醇提取物(WG-ME)后,子宫和卵巢的抗炎和功能改善情况。四组大鼠分别为车辆处理对照组、双酚 A 处理组(100 毫克/千克体重)、双酚 A + WG-ME 组(100 毫克双酚 A/千克体重 + 200 毫克 WG-ME/ 千克体重)和 WG-ME 组(200 毫克/千克体重)。LC-MS 研究证实,WG-ME 中含有多种生物活性成分。为了检测 WG-ME 对双酚 A 的疗效,还采用了 ELISA、PAGE、实时 PCR 和免疫组织染色法。结果表明,WG-ME能使子宫和卵巢的重量显著增加,并能改善发情周期和抗氧化状态。WG-ME 能有效抑制肿瘤坏死因子-α(TNF-α)和核因子卡巴-B(NF-κB)的 mRNA 表达。这种提取物还能增加服用双酚 A 的大鼠子宫组织中抗凋亡因子 BCL2(B 细胞淋巴瘤 2)的表达,同时抑制肿瘤蛋白 p53、cylcin-D1 和 BAX(BCL2 相关蛋白 X)的异常表达。促性腺激素和生殖激素水平的提高、雄激素受体信号的减弱、卵泡生长的改善、颗粒层的明显出现以及子宫组织形态的改善,都支持了类固醇生成事件的增强。WG-ME 中丰富的芹菜素和儿茶素化合物可能会增强上述作用。分子相互作用研究预测,芹菜素通过与 TNF-α 的主要位点相互作用来抑制 TNF-α。因此,WG-ME 可在控制双酚 A 引起的生殖器官功能失衡方面发挥预防功效:在线版本包含补充材料,可在 10.1007/s13205-024-04117-0获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methanolic extract of wheatgrass (Triticum aestivum L.) prevents BPA-induced disruptions in the ovarian steroidogenic pathway and alleviates uterine inflammation in Wistar rats.

The present study examined the anti-inflammatory and functional improvement of the uterus and ovary, respectively, in bisphenol-A (BPA)-fed adult Wistar rats following the ingestion of methanolic extract of wheatgrass (WG-ME). Four groups of rats were conditioned as vehicle-treated control, BPA-treated (100 mg/kg b.w.), BPA + WG-ME (100 mg BPA/kg b.w. + 200 mg WG-ME/kg b.w.), and WG-ME (200 mg/kg b.w.) groups. The LC-MS study confirmed the presence of numerous bioactive components in WG-ME. ELISA, PAGE, real-time PCR, and immunohistostaining were executed to test the efficacy of WG-ME against BPA. WG-ME was shown to induce significant weight gain of the uterus and ovaries as well as improve the estrous cycle and antioxidant status. WG-ME effectively suppressed the mRNA expression of TNF-α (tumor necrosis factor-alpha) and NF-κB (nuclear factor kappa-B). This extract also increased the expression of the antiapoptotic factor BCL2 (B-cell lymphoma 2) in the uterine tissue of rats administered BPA while impeding the abnormal expression of the tumor proteins p53, cylcin-D1, and BAX (BCL2-associated protein X). An enhanced steroidogenic event was supported by improved gonadotropins and reproductive hormone levels, feeble signaling of androgen receptors, and improved ovarian follicular growth with a distinct appearance of granulosa layer as well as better uterine histomorphology. The abundance of apigenin and catechin compounds in WG-ME may potentiate the above effects. The molecular interaction study predicted that apigenin inhibits TNF-α by interacting with its major site. Hence, WG-ME may exert its preventive efficacy in managing the functional imbalance of reproductive organs caused by BPA.

Supplementary information: The online version contains supplementary material available at 10.1007/s13205-024-04117-0.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3 Biotech
3 Biotech Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍: 3 Biotech publishes the results of the latest research related to the study and application of biotechnology to: - Medicine and Biomedical Sciences - Agriculture - The Environment The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信