负奇数循环签名图的图兰问题

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Junjie Wang , Yaoping Hou , Xueyi Huang
{"title":"负奇数循环签名图的图兰问题","authors":"Junjie Wang ,&nbsp;Yaoping Hou ,&nbsp;Xueyi Huang","doi":"10.1016/j.dam.2024.11.024","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate natural Turán problems on signed graphs in this paper. Let <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>−</mo></mrow></msubsup></math></span> denote the signed cycle of length <span><math><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></math></span> with one negative edge. We determine the maximum number of edges among all unbalanced signed graphs of order <span><math><mi>n</mi></math></span> with no subgraph switching to <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>−</mo></mrow></msubsup></math></span>, where <span><math><mrow><mn>3</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>10</mn></mrow></mfrac><mo>−</mo><mn>1</mn></mrow></math></span>, and characterize the extremal signed graphs. As a by-product, we also obtain the maximum spectral radius among these signed graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"362 ","pages":"Pages 157-166"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turán problem of signed graph for negative odd cycle\",\"authors\":\"Junjie Wang ,&nbsp;Yaoping Hou ,&nbsp;Xueyi Huang\",\"doi\":\"10.1016/j.dam.2024.11.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate natural Turán problems on signed graphs in this paper. Let <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>−</mo></mrow></msubsup></math></span> denote the signed cycle of length <span><math><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></math></span> with one negative edge. We determine the maximum number of edges among all unbalanced signed graphs of order <span><math><mi>n</mi></math></span> with no subgraph switching to <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>−</mo></mrow></msubsup></math></span>, where <span><math><mrow><mn>3</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>10</mn></mrow></mfrac><mo>−</mo><mn>1</mn></mrow></math></span>, and characterize the extremal signed graphs. As a by-product, we also obtain the maximum spectral radius among these signed graphs.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"362 \",\"pages\":\"Pages 157-166\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24004931\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004931","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文将研究有符号图上的自然图兰问题。让 C2k+1- 表示长度为 2k+1 且有一条负边的有符号循环。我们确定了所有阶数为 n 且无子图切换到 C2k+1- (其中 3≤k≤n10-1 )的不平衡有符号图的最大边数,并描述了极值有符号图的特征。作为副产品,我们还得到了这些有符号图的最大谱半径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Turán problem of signed graph for negative odd cycle
We investigate natural Turán problems on signed graphs in this paper. Let C2k+1 denote the signed cycle of length 2k+1 with one negative edge. We determine the maximum number of edges among all unbalanced signed graphs of order n with no subgraph switching to C2k+1, where 3kn101, and characterize the extremal signed graphs. As a by-product, we also obtain the maximum spectral radius among these signed graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信