T. Rodzinka, E. Dionis, L. Calmels, S. Beldjoudi, A. Béguin, D. Guéry-Odelin, B. Allard, D. Sugny, A. Gauguet
{"title":"用于大规模原子干涉仪的最佳 Floquet 状态工程","authors":"T. Rodzinka, E. Dionis, L. Calmels, S. Beldjoudi, A. Béguin, D. Guéry-Odelin, B. Allard, D. Sugny, A. Gauguet","doi":"10.1038/s41467-024-54539-w","DOIUrl":null,"url":null,"abstract":"<p>The effective control of atomic coherence with cold atoms has made atom interferometry an essential tool for quantum sensors and precision measurements. The performance of these interferometers is closely related to the operation of large wave packet separations. We present here a novel approach for atomic beam splitters based on the stroboscopic stabilization of quantum states in an accelerated optical lattice. The corresponding Floquet state is generated by optimal control protocols. In this way, we demonstrate an unprecedented Large Momentum Transfer (LMT) interferometer, with a momentum separation of 600 photon recoils (600 <i><span>ℏ</span></i><i>k</i>) between its two arms. Each LMT beam splitter is realized in a remarkably short time (2 ms) and is highly robust against the initial velocity dispersion of the wave packet and lattice depth fluctuations. Our study shows that Floquet engineering is a promising tool for exploring new frontiers in quantum physics at large scales, with applications in quantum sensing and testing fundamental physics.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"113 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Floquet state engineering for large scale atom interferometers\",\"authors\":\"T. Rodzinka, E. Dionis, L. Calmels, S. Beldjoudi, A. Béguin, D. Guéry-Odelin, B. Allard, D. Sugny, A. Gauguet\",\"doi\":\"10.1038/s41467-024-54539-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The effective control of atomic coherence with cold atoms has made atom interferometry an essential tool for quantum sensors and precision measurements. The performance of these interferometers is closely related to the operation of large wave packet separations. We present here a novel approach for atomic beam splitters based on the stroboscopic stabilization of quantum states in an accelerated optical lattice. The corresponding Floquet state is generated by optimal control protocols. In this way, we demonstrate an unprecedented Large Momentum Transfer (LMT) interferometer, with a momentum separation of 600 photon recoils (600 <i><span>ℏ</span></i><i>k</i>) between its two arms. Each LMT beam splitter is realized in a remarkably short time (2 ms) and is highly robust against the initial velocity dispersion of the wave packet and lattice depth fluctuations. Our study shows that Floquet engineering is a promising tool for exploring new frontiers in quantum physics at large scales, with applications in quantum sensing and testing fundamental physics.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"113 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54539-w\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54539-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Optimal Floquet state engineering for large scale atom interferometers
The effective control of atomic coherence with cold atoms has made atom interferometry an essential tool for quantum sensors and precision measurements. The performance of these interferometers is closely related to the operation of large wave packet separations. We present here a novel approach for atomic beam splitters based on the stroboscopic stabilization of quantum states in an accelerated optical lattice. The corresponding Floquet state is generated by optimal control protocols. In this way, we demonstrate an unprecedented Large Momentum Transfer (LMT) interferometer, with a momentum separation of 600 photon recoils (600 ℏk) between its two arms. Each LMT beam splitter is realized in a remarkably short time (2 ms) and is highly robust against the initial velocity dispersion of the wave packet and lattice depth fluctuations. Our study shows that Floquet engineering is a promising tool for exploring new frontiers in quantum physics at large scales, with applications in quantum sensing and testing fundamental physics.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.