L. Huo , X. Gong , Z. Cao , M. Zhang , Y. Cao , X. Li , W. Tu
{"title":"板振动对多重冲击下复合材料分层形成的影响","authors":"L. Huo , X. Gong , Z. Cao , M. Zhang , Y. Cao , X. Li , W. Tu","doi":"10.1016/j.engstruct.2024.119336","DOIUrl":null,"url":null,"abstract":"<div><div>Dynamic vibration is believed to be a basic property of the impacted composite laminates; however, its effect on delamination formation requires further investigation. This study proposes a numerical model in collaborating with ABAQUS, which was calibrated using experimental results, to investigate the effect of plate vibration on delamination formation in composite laminates subjected to two consecutive identical ice or steel projectile impacts with a fixed loading distance. The only variable parameter for the different simulations was the time interval between the two impacts. The loading condition considered in this study is an extreme case where the composite laminate was still vibrating after the first impact when the second impact occurred. The results showed that the delaminations that formed later were significantly affected by the time intervals of the two identical successive ice or steel projectiles. As the vibrated impact points travel from the minimum peak to the adjacent maximum peak during the first vibration period, the newly formed delamination areas monotonically increase with time and vice versa. The change in the maximum contact forces of two identical impacts induced by dynamic vibration is suggested to be a major reason for the discrepancy between the newly formed delamination and previous ones.</div></div>","PeriodicalId":11763,"journal":{"name":"Engineering Structures","volume":"324 ","pages":"Article 119336"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of plate vibration on delamination formation in composites under multiple impacts\",\"authors\":\"L. Huo , X. Gong , Z. Cao , M. Zhang , Y. Cao , X. Li , W. Tu\",\"doi\":\"10.1016/j.engstruct.2024.119336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dynamic vibration is believed to be a basic property of the impacted composite laminates; however, its effect on delamination formation requires further investigation. This study proposes a numerical model in collaborating with ABAQUS, which was calibrated using experimental results, to investigate the effect of plate vibration on delamination formation in composite laminates subjected to two consecutive identical ice or steel projectile impacts with a fixed loading distance. The only variable parameter for the different simulations was the time interval between the two impacts. The loading condition considered in this study is an extreme case where the composite laminate was still vibrating after the first impact when the second impact occurred. The results showed that the delaminations that formed later were significantly affected by the time intervals of the two identical successive ice or steel projectiles. As the vibrated impact points travel from the minimum peak to the adjacent maximum peak during the first vibration period, the newly formed delamination areas monotonically increase with time and vice versa. The change in the maximum contact forces of two identical impacts induced by dynamic vibration is suggested to be a major reason for the discrepancy between the newly formed delamination and previous ones.</div></div>\",\"PeriodicalId\":11763,\"journal\":{\"name\":\"Engineering Structures\",\"volume\":\"324 \",\"pages\":\"Article 119336\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141029624018984\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141029624018984","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Influence of plate vibration on delamination formation in composites under multiple impacts
Dynamic vibration is believed to be a basic property of the impacted composite laminates; however, its effect on delamination formation requires further investigation. This study proposes a numerical model in collaborating with ABAQUS, which was calibrated using experimental results, to investigate the effect of plate vibration on delamination formation in composite laminates subjected to two consecutive identical ice or steel projectile impacts with a fixed loading distance. The only variable parameter for the different simulations was the time interval between the two impacts. The loading condition considered in this study is an extreme case where the composite laminate was still vibrating after the first impact when the second impact occurred. The results showed that the delaminations that formed later were significantly affected by the time intervals of the two identical successive ice or steel projectiles. As the vibrated impact points travel from the minimum peak to the adjacent maximum peak during the first vibration period, the newly formed delamination areas monotonically increase with time and vice versa. The change in the maximum contact forces of two identical impacts induced by dynamic vibration is suggested to be a major reason for the discrepancy between the newly formed delamination and previous ones.
期刊介绍:
Engineering Structures provides a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the structural engineering and structural mechanics communities. Particularly welcome are contributions dealing with applications of structural engineering and mechanics principles in all areas of technology. The journal aspires to a broad and integrated coverage of the effects of dynamic loadings and of the modelling techniques whereby the structural response to these loadings may be computed.
The scope of Engineering Structures encompasses, but is not restricted to, the following areas: infrastructure engineering; earthquake engineering; structure-fluid-soil interaction; wind engineering; fire engineering; blast engineering; structural reliability/stability; life assessment/integrity; structural health monitoring; multi-hazard engineering; structural dynamics; optimization; expert systems; experimental modelling; performance-based design; multiscale analysis; value engineering.
Topics of interest include: tall buildings; innovative structures; environmentally responsive structures; bridges; stadiums; commercial and public buildings; transmission towers; television and telecommunication masts; foldable structures; cooling towers; plates and shells; suspension structures; protective structures; smart structures; nuclear reactors; dams; pressure vessels; pipelines; tunnels.
Engineering Structures also publishes review articles, short communications and discussions, book reviews, and a diary on international events related to any aspect of structural engineering.