任意时空维度中的朗道奇点和前导奇点

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Wojciech Flieger, William J. Torres Bobadilla
{"title":"任意时空维度中的朗道奇点和前导奇点","authors":"Wojciech Flieger,&nbsp;William J. Torres Bobadilla","doi":"10.1140/epjp/s13360-024-05796-7","DOIUrl":null,"url":null,"abstract":"<div><p>Using the decomposition of the <i>D</i>-dimensional space-time into parallel and perpendicular subspaces, we study and prove a connection between Landau and leading singularities for <i>N</i>-point one-loop Feynman integrals by applying the multidimensional theory of residues. We show that if <span>\\(D=N\\)</span> and <span>\\(D=N+1\\)</span>, the leading singularity corresponds to the inverse of the square root of the leading Landau singularity of the first and second type, respectively. We make use of this outcome to systematically provide differential equations of Feynman integrals in canonical forms and the extension of the connection of these singularities at the multi-loop level by exploiting the loop-by-loop approach. Illustrative examples with the calculation of Landau and leading singularities are provided to supplement our results.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 11","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Landau and leading singularities in arbitrary space-time dimensions\",\"authors\":\"Wojciech Flieger,&nbsp;William J. Torres Bobadilla\",\"doi\":\"10.1140/epjp/s13360-024-05796-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using the decomposition of the <i>D</i>-dimensional space-time into parallel and perpendicular subspaces, we study and prove a connection between Landau and leading singularities for <i>N</i>-point one-loop Feynman integrals by applying the multidimensional theory of residues. We show that if <span>\\\\(D=N\\\\)</span> and <span>\\\\(D=N+1\\\\)</span>, the leading singularity corresponds to the inverse of the square root of the leading Landau singularity of the first and second type, respectively. We make use of this outcome to systematically provide differential equations of Feynman integrals in canonical forms and the extension of the connection of these singularities at the multi-loop level by exploiting the loop-by-loop approach. Illustrative examples with the calculation of Landau and leading singularities are provided to supplement our results.</p></div>\",\"PeriodicalId\":792,\"journal\":{\"name\":\"The European Physical Journal Plus\",\"volume\":\"139 11\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Plus\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjp/s13360-024-05796-7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-024-05796-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用将 D 维时空分解为平行子空间和垂直子空间的方法,我们应用多维残差理论研究并证明了 N 点单环费曼积分的朗道奇点和前导奇点之间的联系。我们证明,如果\(D=N\)和\(D=N+1\),前导奇点分别对应于第一类和第二类前导朗道奇点平方根的倒数。我们利用这一结果系统地提供了典型形式的费曼积分微分方程,并利用逐环方法在多环水平上扩展了这些奇点的联系。我们还提供了计算朗道奇点和前导奇点的示例来补充我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Landau and leading singularities in arbitrary space-time dimensions

Landau and leading singularities in arbitrary space-time dimensions

Using the decomposition of the D-dimensional space-time into parallel and perpendicular subspaces, we study and prove a connection between Landau and leading singularities for N-point one-loop Feynman integrals by applying the multidimensional theory of residues. We show that if \(D=N\) and \(D=N+1\), the leading singularity corresponds to the inverse of the square root of the leading Landau singularity of the first and second type, respectively. We make use of this outcome to systematically provide differential equations of Feynman integrals in canonical forms and the extension of the connection of these singularities at the multi-loop level by exploiting the loop-by-loop approach. Illustrative examples with the calculation of Landau and leading singularities are provided to supplement our results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal Plus
The European Physical Journal Plus PHYSICS, MULTIDISCIPLINARY-
CiteScore
5.40
自引率
8.80%
发文量
1150
审稿时长
4-8 weeks
期刊介绍: The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences. The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信